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Figure 0.1: PREFIRE algorithm connectivity and flow.
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1 Level 1 Radiances and Geolocation

Thermal Infrared Spectrometer Design Model Brian J. Drouin January 2024

Algorithm Theoretical Basis Document of the Thermal Infrared Spec-
trometer for the PREFIRE mission

1.1 Introduction

In this section we describe the radiometric, spatial and spectral characteristics
of a space-based scanning Thermal InfraRed Spectrometer (TIRS) implemented
for the Polar Radiant Energy in the Far-InfraRed Experiment (PREFIRE) mis-
sion. Fundamentally, TIRS is a grating spectrometer with a slit projection on
the ground aligned cross-track to the satellite motion - a so-called “pushbroom”
configuration. TIRS contains a 2-dimensional focal plane array detector with
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one dimension aligned cross-track, parallel to the slit (spatial), and the other
dimension containing the spectral information from the scene, perpendicular to
the slit.

The ATBD presented here describes the theoretical basis of the instrument
geometric, spectral and radiometric characteristics of TIRS, as well as details
of the geolocation and radiometric calibration algorithms that are implemented
as part of the PREFIRE operational L1B processing package. The TIRS ge-
ometric, spectral and radiometric characteristics are described in sections 1.2
- 1.5, followed by sections 1.6 and 1.7 that describe more specific algorithm
implementation details for the L1B package.

1.2 TIRS geometric model

1.2.1 Imaging considerations

The basic angular resolution parameters are controlled by the instrument focal
lengths and the detector size and spectrometer slit width. The focal lengths
are different in these two perpendicular axes. In the spatial dimension, the
angular width of the observed scene (αsc) is limited by the detector size ld; in
the along-track (cross-slit) dimension, the angular width (αn) is controlled by
the spectrometer slit width lsw. The idealized angular Instantaneous Field of
View (IFOV) is then given by:

αsc = ld/fsc (1.1)

and
αn = lsw/fn (1.2)

The size of the instantaneous ground footprint for the scene, lsc is then
determined by the orbital altitude H:

lsc = αscH (1.3)

The TIRS optical design parameters result in IFOV angles of αsc = 3.2◦, αn =
1.3◦. At a nominal orbital altitude of H = 540 km, the IFOV ground footprint
size of each scene is approximately 30× 12 km (along track × cross track).

The total number of cross-track scenes with cross-track dimension lsc is de-
termined by the number of detector strips (rows) in the focal plane array. Due
to gaps between detector strips, the spatial sampling is not contiguous, with
separations between samples in the cross-track direction equal to

∆lgap = l′dH/fsc (1.4)

The total angular field of view of the swath, that projects to the ground
swath width (lSW), is determined by the pixel width and spacing (l′d) of these
rows, and the number of detector rows, MFPA = 8:

lSW = MFPAlsc + (MFPA − 1)∆lgap (1.5)

The detector gaps, l′d are slightly more than a factor of two larger than the
detector size ld. The resulting swath width, lSW, is approximately 270 km.
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Figure 1.1: Flowchart depicting L1B algorithms and the input and output data
files. The array dimensions are given, with the number of spectral channels,
n = 64, number of spatial scenes, sc = 8, and the number of pre-computed cal
target temperatures equal to 350.
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1.3 Scene FOV model

The Level-0 spacecraft data includes the Earth Centered Inertial (ECI) position
and velocity. The nominal attitude of the spacecraft with respect to latitude
and longitude can be determined from transformation from the spacecraft frame
to the instrument frame and these ECI positions and velocity components. The
subroutine converts all positions to geodetic coordinates and determines the
spacecraft azimuth angle, β from a finite difference of geodetic spacecraft lati-
tude and longitude positions (φ,θ) one unit velocity vector apart. The calcula-
tion for β can be written as follows, in terms of the ECI positions, spacecraft
latitude and longitude, and the orbital radius (Re):

β = − arctan
Re(φ− φ′)√

x2
ECI + y2

ECI(θ − θ′)
(1.6)

Additional corrections to the attitude vector associated with yaw/pitch and
roll of the spacecraft can be applied while determining the azimuth and tilt of
the TIRS optical axis in the ECI. These will be described after providing the
focal plane coordinate projections.

The angular projections of the detector dimensions onto the earth scene,
lsc and ln are determined from instrument pointing, composed as tilt (α′) and
azimuth (β′), as well as the orbital height, and geometric properties of the TIRS
instrument provided from pre-flight testing. Imperfections of imaging will be
projected onto Level 1b radiances as part of the geo-rectification algorithms.

Ground calibration of the TIRS instruments enable modeling of instanta-
neous field-of-view limits for each pixel, with centers lcsc,m = (Xc

sc,0, Y
c
sc,0) de-

fined as the projected rays normal to the focal plane from an internal detector
coordinate system. The detector coordinate system places the MFPA zero - or-
der pixels centered along the Xc

sc,0 = 0.0 axis, with Y c
sc,0 values evenly spaced

at

Y c
sc,0 = (sc− (MFPA − 1)/2)(lp + lgap) (1.7)

For ideal center ray angles of each pixel, Y-coordinates, corrected for spectral
dispersion, provide the nominal tilt angle (αcsc,n) which is the angle subtend-
ing nadir and the pixel footprint. The tracing of this distortion in the spectral
dimension results in a shift of the spectral response function (described later)
with respect to other spectral images, so only the spatial distortion is con-
sidered in this section. These distortions (Xc,±

sc,n, Y
c,±
sc,n) will be measured and

quantified with a geometric instrument model (F) as offsets to the geo-located
zero-channels.

Xc,±
sc,n = Xc,±

sc + F(sc, λ) (1.8)

and
Y c,±
sc,n = Y c,±

sc + F(sc, λ) (1.9)

A line of points associated with the ground track are defined by projection
from orbit using these MFPA values. Spectral footprints depend on physical
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pixel location and dispersion corrections in the X coordinates as shown later.
Additionally, the finite size of the slit and width and breadth of the pixels
each must be projected also in order to track the (potentially distorted) images
onto the earth surface. Geometric calibration of the instrument provides a 2D
model of the pixel centroids and corners, in which any mis-alignment of the third
dimension is projected onto the (actual) focal plane and blurs the 2D projection.
The corner coordinates are paired by (X+

sc,n, Y
+
sc,n),(X+

sc,n, Y
−
sc,n),(X−sc,n, Y

+
sc,n),

and (X−sc,n, Y
−
sc,n).

Adjustments to the azimuth and tilt (indicated with primes) are necessary to
track the corners (and any non-ideal centroid positions), and these adjustments
for α become,

α
′c,±
sc,n =

αc,±
sc,n

|αc,±
sc,n|

√
(αc,±
sc,n)2 + (dXc,±

sc,n)2 (1.10)

where dX is the angular difference between the pixel corner x coordinate and
the ideal position of the pixel centroid.

dXc,±
sc,n = (Xc,±

sc,n −Xc,0
sc,n)/f (1.11)

A similar correction for β′ is found

β
′c,±
sc,n = tan−1(dXc,±

sc,n/α
c,±
sc,nm) (1.12)

These equations for azimuth and tilt can be easily modified to accommodate
for yaw, pitch and roll with respect to the spacecraft velocity vector in which β
is defined (the nadir vector has been assumed for tilt). For yaw correction, the
value is added directly to β, and for roll the value is added to α. The pitch of the
spacecraft distorts the projection in the same sense as the angular coordinate
dX and can thus be added to the differential angular coordinate prior to its use
in calculating α′ and β′.

None of the spatial scenes directly project perpendicularly from the instru-
ment/spacecraft, the rays diverge across the swath with an observing gap in
the center due to the even number of pixels. Thus the rays spread out in the
cross-track direction from the instrument/spacecraft pointing direction, where
the scene-specific angular dependence can be computed from the angular IFOV.

1.4 TIRS Spectral Sampling and Resolution

The spectral sampling interval depends on the desired spectral range and num-
ber of detectors per column in the focal plane. The total number of detectors
allowed in the spectral direction is n (equal to 64), including the non-spectral
detection channel known as the ‘zero’ channel.

The ideal spectral sampling interval is then the range BW, divided by the
number of elements

∆λs =
λ2 − λ1

n− 1
(1.13)
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where ∆λs = Spectral sampling interval (µm)
λ2 = Maximum wavelength desired (µm)
λ1 = Minimum wavelength desired (µm)
The spectral dispersion is a property of the grating related to the groove spacing
lg.

The angular response of a grating as a function of wavelength is governed
by the grating equation

lg(sin ζi − sin ζm) = mλ (1.14)

Where ζi is the incidence angle, m is the diffraction order and ζm is the angle
at which the wavelength λ exits the grating for its mth order. Such that

ζm =

(
mλ

lg
− sin ζi

)
(1.15)

Since m can be any integer, positive, negative and zero, the grating distributes
light in multiple directions with overlapping effect. In an Offner spectrometer,
the toroidal curvature of the grating (with X-periodicity) and compensating
toroidal optic project the outgoing central dispersive rays within the f-cone at
a normal incidence angle at the detector. Thus, the spectral dimension, x, of
the focal plane can be described without angular factors. The intersections
of the nth wavelength with the focal plane may be described linearly with an
effective dispersion (lg = l(n−1)/BW). For spectrometry, the M×n thermopile
detector array in TIRS is situated behind an Offner spectrometer with a slit
width that is chosen to be 2 pixel widths (d) in the spectral dimension. Thus
the angular response of the system in the spectral direction is linearized onto the
x coordinate for convolution of the slit, the diffraction pattern, and the extent
of the detector. The intersections of the nth wavelength with the focal plane
may be described

xn = m
λn
lg

+ x0 + x′ (1.16)

Where x0 is the intersection of the 0th order (non-diffracted or reflected) ray in
the chosen focal plane coordinate system and x′ is the (nominally zero) offset
of the slit center from the optical axis.

<n,λ = <slit(x
′ ± lsw/2)⊗<det(x0 + l[n± 1/2])⊗<diff(x, λ) (1.17)

<n,λ = Linearized response of the system in the spectral direction for channel
n
<slit = Rectangular response function representing the slit
<det = Rectangular response function representing the detector
<diff(λ, x) = Line spread function response of the optics including diffraction
λ = Wavelength (µm)
lsw = slit width (µm)
In many optical models, <diff is assumed to have a small wavelength depen-
dence and the spectral response function is fitted to a Gaussian, with another
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Gaussian representing the spatial spreading. However, the large bandwidth of
TIRS makes such an assumption circumspect, so the wavelength dependence of
the instrument function is explicitly calculated at several sub-pixel (wavelength)
steps, and then convoluted with both the detector and slit sizes. The diffraction
pattern is assumed to be a ideal scaled sinc function:

<diff(x) =

(
γ sin(πx/γ)

πx

)2

(1.18)

The spectral resolution of the system is the FWHM of the spectral response
function

∆λn = FWHM(<n,λ) (1.19)

where ∆λn = Spectral resolution of the nth detector element (µm).
Although diffraction spreads out the longer wavelengths at the focal plane,

often into adjoining pixels, this is considered a blurring of the scenes and not
a loss of signal. The convolution with the slit and detector widths properly
accounts for this effect as long as the adjacent scenes are spectrally similar.
Issues with geometric calibrations will be encountered in non-flat field images.

A similar blurring, or vignetting, effect occurs in the spatial or y dimension
of the sensor with:

<sc,λ = <slit(y
′ ± lsl/2)⊗<det(y0 + lp[sc± 1/2])⊗<diff(y, λ) (1.20)

Where <m,λ = diffraction limited response of the system in the spatial direction
<diff(y, λ) = Line spread function response of the optics including diffraction
lsl = slit length (µm)
sc = spatial scene counter from 1 · · · 8

1.5 TIRS Radiometric model

1.5.1 Signal Calculation

The thermopile detectors used by TIRS are sensitive to the total net radiation
at the detector surface, from all wavelengths and incidence angles. The net
radiation is a balance of thermal radiation emitted by the detector, emitted by
the instrument optical elements along the optical path, emitted by the instru-
ment internal structure, and the incident radiation from the observed scene,
all expressed as at-detector irradiances (radiation incident on the detector) or
exitance (radiation emitted by the detector) in units of W m−2. The TIRS scan
mirror can select between an Earth view, space view, or internal calibration
target for the observed scene. The total net radiation can be described by a
simplified model of the instrument that splits the total irradiance for at the
detector for channel n (Etotal,n) into multiple terms:

Etotal,n = Esc,n + Efilt + Einst − σBT 4
det (1.21)
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where Esc,n is the irradiance from the observed scene for spectral channel n;
Efilt is irradiance emitted from the order-sorting spectral filter; Einst is irradi-
ance emitted from other optical or instrument surfaces that passes through the
order sorting filter; and the final term is the exitance emitted from the detector
itself. Note that the detector is assumed to be a blackbody (unit emissivity)
such that the total exitance is given by the Stefan-Boltzmann law. The re-
maining terms all have spectral dependent terms (e.g. the order sorting filters’
spectral transmission and emissivity).

The spectral irradiance from the scene is the spectral integral of the product
of the spectral response function and the scene spectral radiance L(λ) and the
angular integral over the incident light cone at the detector with cos θ weighting.
The spectral response function can be written as the product of the line spread
function described above (<n,λi), the order sorting filter transmission (τf,λi) and
the grating efficiency (1ρg,λi):

SRFn(λi) =1ρg,λi τf,λi <n,λi (1.22)

Esc,n =

∫ λ1

λ0

∫
Ω

SRFn(λ)L(λ) cos θ dλ sin θ dθ dφ (1.23)

Note that the light cone (Ω) is the TIRS optical path is not circular, due to
the different focal lengths in the along-slit and cross-slit dimensions. The ellip-
tical shape means the integration limits do not have simple analytic expressions.
In practice, the average between the two cone angles can be used with relatively
small error (less than 10%), since the focal lengths are not too different.

The non-dispersive light from the scene is detected in a broad-band channel
and corresponds to signal Esc,0, which has no order sorting filter in the optical
path. In this case, the total irradiance can be written as:

Etotal,0 = Esc,0 + Einst,0 − σBT 4
det (1.24)

Where the irradiance due to the scene (Einst,0) is different than the similar
term in equation 1.21, due to the lack of order sorting-filter contributing to
thermal emission and reflection in the path. The scene irradiance depends on
the reflective efficiency of the grating 0ρg,λ and the transmission of the diamond
focusing window, τC :

Esc,0 =

∫ λ1

λ0

∫
Ω

0ρg,λ τC L(λ) cos θ dλ sin θ dθ dφ (1.25)

Although the instrument is designed to maximize the thermal signal from
the objective, thermopile detectors are sensitive to all wavelengths incident upon
the devices from the entire hemisphere above, such that Esc,n is only a fraction
of the temperature change sensed by the detector element. In a perfect ther-
mopile design, the walls, or internal instrument ‘scene’, are exactly the same
temperature as the detector, such that the device is only sensitive to the scene
at the objective. Due to the heat dissipated from the detection electronics, the
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TIRS detectors, with temperature Tdet, are relatively warm in comparison to
other instrument elements, such as the filters and optics, with temperatures Tfilt

and Toptics that are typically one degree and four degrees C cooler, respectively.
The L1 on-orbit radiometric calibration algorithm is designed to account for
these temperature gradients as part of the time varying offset term (see section
1.7).

The signal levels above are expressed in terms of irradiances, as that is
the fundamental radiative quantity at the detector level. The radiation of the
observed scene is more naturally expressed in terms of the spectral radiance
with units W m−2 sr−1 µm−1. We can compute the expected scene spectral
radiance for channel n (Lsc,n) by applying the SRF in the standard way:

Lsc,n =

∫ λ2

λ1
Lsc(λ) SRFn(λ) dλ∫ λ2

λ1
SRFn(λ) dλ

(1.26)

Our definition of SRF 1.22 does not include a normalization, which means the
amplitude of the SRF includes information about the total system throughput.
The SRF amplitude, defined this way, could include potential systematic biases
or uncertainties (for example, we do not include the reflectivity of the mirror).
However, since our fundamental radiance product is a spectral radiance, through
the standard application of the SRF (1.26) the overall amplitude is automatically
normalized and only the SRF spectral shape impacts the result.

Finally, each thermopile detector has a characteristic voltage related to the
net at-detector irradiance described above, such that the detector responsivity,
℘sc,n (with units V/W) and detector area, l2p (converted to m2), allow calculation
of the sensible voltage, V :

Vsc,n = l2p℘sc,nEtotal,n (1.27)

1.5.2 Instrument Noise

The detector noise of the thermopile detectors is generally spectrally flat. All
detector elements will have approximately the same Noise Equivalent Power
(NEP), typically expressed by a constant detectivity D∗. Additional terms,
such as electronics noise from the read out integrated circuit (ROIC), could be
converted from voltage to power using the instrument responsivity, and added
in quadrature to get the total instrument noise.

Ultimately we need the instrument noise defined as a NEDR (Noise equiv-
alent delta spectral radiance) to match the fundamental radiometric quantity
reported in the L1b data product. In principle, the NEDR can be computed
based on the detector D∗ and electronics noise, and combining with other rel-
ative instrument parameters such as the optics f-number and detector areas.
In practice, the instrument NEDR is best estimated empirically by analysis of
collected sensor data. In this manner, any unknowns in the original instrument
parameters or changes in instrument characteristics during hardware integration
would automatically be included in the NEDR estimate. This is particularly
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Figure 1.2: The spectral NEDR of TIRS1 and TIRS2 estimated from pre-launch
radiometric calibration data. Noisy or unresponsive pixels are omitted from the
plot. The gaps at wavelengths ∼ 8, 15, and 31 µm are due to the edges of the
order sorting filters.

important for identifying bad detector elements that may change behavior over
time.

Figure 1.2 shows the empirically estimated channel NEDRs from the pre-
launch radiometric testing of each TIRS instrument. Noisy or unresponsive
detector elements have been omitted from the plot. The on-orbit detector per-
formance often changes post launch, so these pre-launch estimates will be re-
placed with on-orbit estimates if necessary.

1.5.3 Digitization

The TIRS ROICs have integrated analog-to-digital converters, and thus the
associated gain, gIC , has units of counts/volt. An offset, oIC , in the digitizer
allows for all counts to be positive values. The gain and offset are specific to
each ROIC, and thus equal for a series of TIRS channels, here we assume that
all ROICs have equal gain and offset values. The signal digitization enables the
TIRS data memory storage to contain arrays of integers, S, that are sc× n.

Ssc,n = oIC + gICVsc,n (1.28)
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Raw TIRS data contain blocks of the Ssc,n arrays separated by headers to
indicate housekeeping information and the target selecting mirror positions.

The factors τf ,nρg,<sc,n are determined by calibration or approximated by
the system design parameters. It is common for SRF to be normalized to unity
and efficiency factors to be absorbed into < coefficients. The choice here to
have a relatively flat value of < for each pixel is from an engineering perspective
and retains the broadband nature of these elements. For purposes of signal and
noise differentiation, the signal equations will be separated by the scenes, such
that the effects of instrument and detector temperature variation will be treated
as noise and assumed constant for signal.

1.5.4 Out of Band signal

In addition to capturing the pure reflection (0th order) and primary (1st order)
of the grating, other (higher) grating orders will propagate into the detector
plane and produce signals if not absorbed or scattered by the filters. The wave-
lengths, at a given channel, of this undesired radiation are related through the
linearized grating equation 1.16. Orders other than the 1st order fall outside
of the designed filter bandwidths, such that the minimal filter transmission at
these positions attenuates the light.

The out-of-band term can be added by generalizing the SRF to m orders.

SRFsc,n(λi) =

3∑
m=1

ρg,λi/mτf,λi<n,λi/m (1.29)

1.6 Level 1 Geolocation Algorithm

The geolocation algorithm starts with the sets of tilt and azimuth angles at the
scene centers and corner points, described in section 1.2, that define the TIRS
IFOV. As described above, the in-track IFOV, perpendicular to the spectral slit,
is approximately 30 km. Dwell time, t, is the amount of time the image is aver-
aged (or integrated) while the along-track IFOV moves across the surface during
the orbital motion. At the nominal PREFIRE orbital altitude, the magnitude
of the satellite ground velocity, |vg| is approximately 7.6 km/s. The TIRS dwell
time is 0.7s, corresponding to an additional extent of the (non-instantaneous)
FOV by approximately 5 km along-track, yielding a total FOV size of 35 × 12
km (along track × cross track). Since the along-track IFOV is much larger than
the orbital motion during the dwell time, successive observations will contain
substantial overlap in their ground footprints.

To find the geodetic ground latitude, φc,±
sc , and ground longitude, θc,±

sc , of
each point projected onto the oblate spheroid earth, we utilize a MATLAB
routine lookatSpheroid which was confirmed with custom code to efficiently
compute the distance to and positions on the oblate Earth. For the scene
centers, this projection is done at the halfway point ( 1

2 t) of the integration
time. Additional projections are done at each corner of the scene (according
to the (X±sc,n, Y

±
sc,n) described above), both at the beginning and end times of
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the detector integration time (to capture the full extent of the motion-smeared
FOV) and at the central time (to capture the IFOV at the mid-point of the
integration). These projections to geodetic ground position assume the WGS84
ellipsoidal model.

Starting from the geodetic, ellipsoidal latitude and longitude, the earth geoid
(EGM96 model) and topography are sampled in order to obtain the surface el-
evation at all ground points. The surface elevation is used with an iterative
algorithm to update the altitude and latitude and longitude positions by ac-
counting for the line of sight vector’s intersection with the elevated surface.
This algorithm is implemented in a similar fashion as the VIIRS geolocation
algorithm (VIIRS geolocation ATBD, 2017). The surface topography is derived
from the Copernicus 90m Digital Elevation Model (GLO-90 DEM).

1.7 Level 1 Radiometric Calibration Algorithm

During nominal operations, the instrument performs active calibration sequences
in which it is commanded to observe an internal calibration target at Tcal and
external view of cold space at temperature Tsp. These calibration views are used
in a two-point (linear) calibration equation to convert the raw counts (Ssc,n) into
calibrated spectral radiance (Lsc,n).

At TIRS wavelengths, the cold space at Tsp ∼ 2.7 K produces essentially zero
radiance, so the Esc term in 1.21 would also be zero. Therefore, the space view
quantifies the aggregate contributions of the background signals (Efilt, Einst, and
σBT

4
det in 1.21), while the calibration target view includes the same terms as

well as a scene radiance equal to blackbody emission at Tcal. The TIRS optical
path and internal calibration are designed to be as isothermal as possible, which
reduces calibration bias due to uncertainty in the blackbody target emissivity.
Therefore, the radiance from the internal calibration target is assumed to be a
blackbody (ε = 1).

Combining equations 1.21 and 1.28 and taking the difference between counts
measured from a calibration target view (Scal

sc,n) and a space view (Ssp
sc,n), yields:

Scal
sc,n − Ssp

sc,n = gIC l2p℘sc,nEsc,n (1.30)

Since the at-detector scene irradiance Esc,n is proportional to the at-aperture
scene spectral radiance Lsc,n we can rewrite this equation in terms of L, and
lump all constants together into a single radiometric gain grad

sc,n:

Scal
sc,n − Ssp

sc,n = grad
sc,nLsc,n (1.31)

For the view of the calibration target, the Lsc,n are assumed to be blackbody
radiances after applying the SRFs using equation 1.26. For efficiency, these
values are pre-computed in a lookup table over a range of Tcal, and then linearly
interpolated to the Tcal sampled at the time of the calibration target view. Given
the interpolated pre-computed blackbody radiances Bsc,n,Tcal

, the radiometric
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gain is computed as:

grad
sc,n =

Scal
sc,n − Ssp

sc,n

Bsc,n,Tcal

(1.32)

Application of the gain to the measured earth signal allows calculation of the
calibrated earth spectral radiances, Lsc,n, designated the Level 1a (L1a) science
data. This calculation uses the space view counts as the offset term (Sspsc,n) and
divides by the radiometric gain:

Lsc,n =
Ssc,n − Ssp

sc,n

grad
sc,n

(1.33)

Because the background terms will drift as the instrument temperatures
change, the gain and offset terms must be interpolated from the values derived
at the calibration sequence times to the times for each TIRS earth view ob-
servation. The interpolation method must replicate the temporal behavior of
the background terms. More frequent calibration sequences will allow for sim-
pler calibration functions, at the cost of lost earth-view science data collections.
The current implementation of the radiometric calibration uses the “makima”
(Modified Akima piecewise cubic Hermite interpolation) in MATLAB for the
temporal interpolation. During IOC the performance of this method will be
evaluated, with the goal of maximizing the earth-view science data that can be
collected with minimal radiometric calibration error.

1.8 References

Joint Polar Satellite System (JPSS) VIIRS Geolocation Algorithm Theoreti-
cal Basis Document, Rev A, 2017. Available from https://www.star.nesdis.

noaa.gov/jpss/Docs.php

Copernicus Digital Elevation Model (DEM), GLO-90, was accessed on 30 Oc-
tober 2022 from https://registry.opendata.aws/copernicus-dem.
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2 Level 2 Cloud Mask

2.1 Introduction

The PREFIRE L2 algorithm suite requires that every TIRS scene is known to
be either clear or cloudy. This determination is made through a cloud masking
algorithm designed for TIRS. Not only should this algorithm work globally, but
it should perform seamlessly in the high latitudes where geophysical conditions
make cloud detection especially challenging. Towards this end, the PREFIRE
algorithm team developed two independent cloud masks based on different al-
gorithm heritage and training set approaches. The first approach leverages a
principal component (PC) methodology (PC-MSK) developed for ESA’s FO-
RUM mission and is described in Kahn et al. (2023). The second approach is
based on a neural network (NN) methodology (NN-MSK) and is described in
Bertossa et al. (2023). Having two alternative – and potentially complemen-
tary cloud mask algorithms – will enhance the chances of successfully meeting
or exceeding the PREFIRE mission requirements (see Section 2.2).

2.2 PREFIRE mission requirements

The PREFIRE mission has clearly defined requirements for the L2-MSK prod-
uct. (1) The cloud mask is required to detect 80-90% of clear-sky occurrences.
The primary usage of the cloud mask is to identify clear scenes with high con-
fidence such that other downstream PREFIRE algorithms can operate within
clear-sky conditions to meet their own requirements. (2) The aforementioned
requirement applies to clear-sky scenes with spatial scales of 15-50 km and larger
extents. At these scales, clear-sky is mostly resolved by the nominal TIRS spa-
tial footprint size. Clear-sky scenes with scales smaller than 15 km are smaller
than the TIRS spatial footprint size and have no mission requirement for detec-
tion.

2.3 PC Mask

2.3.1 Use of GMAO simulations

Algorithm development was carried out with a simulated L2-MSK that leveraged
GMAO numerical model output with radiances generated from PCRTM. The
simulations are intended to mimic the expected TIRS instrument characteristics
and post-launch noise estimates. The L2-MSK will be tailored to the unique
characteristics of the two TIRS instruments during the post-launch time period.

The initial version of L2-MSK is based on GMAO simulations coupled to a
Level-1 TIRS instrument model (see Section 1). The TIRS radiances simulated
with the GMAO model are used with initial TIRS SRF estimates using PCRTM.
The simulations are available over the entire globe for a range of days during
2020 with a nominal configuration mimicking expected PREFIRE cubesat or-
bits. Some relevant GMAO fields of interest include profiles of temperature (T),
specific humidity (q), cloud optical depth (COD), and ice/liquid water content
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Figure 2.1: GMAO simulations of column optical depth in natural log scale (left)
and cloud top thermodynamic phase (right). Shown is an orbital segment of
TIRS data along the Siberian coastline for eight cross-track and 250 along-track
TIRS scenes.

(IWC/LWC). Log-scale values of COD are shown in Figure 2.1 for an example
orbital segment along the Siberian coastline. The cloud-top thermodynamic
phase (liquid, ice, mixed) from the simulations is also depicted. This particular
scene is fairly typical in that clear-sky is located over land and clouds are found
over the ocean. Further examples over Greenland and in the low-latitudes are
described in Kahn et al. (2023).

Lower tropospheric stability (LTS) is defined as the difference in potential
temperature between 700 hPa (θ700) and 1000 hPa (θ1000). LTS is a useful
metric for capturing vertical layers that may contain quasi-isothermal lapse
rates or temperature inversions that could be problematic for thermal-based
cloud detection (e.g., Garay et al. 2008). The GMAO profiles of water vapor
mixing ratio are integrated into a single value of integrated precipitable water
vapor (PWV). LTS and PWV are shown in Figure 2.2. This scene exhibits
strong variability in thermal structure and moisture and complements the cloud
complexity depicted in Figure 2.2. High values of LTS are common within the
Arctic region and complicate cloud detection. Furthermore, variable amounts
of PWV can also complicate cloud detection as water vapor absorption features
strongly depend on the TIRS channel frequency.

2.3.2 Adapting the FORUM cloud detection method to TIRS

We briefly summarize the implementation of the Maestri et al. (2019) method-
ology developed for the FORUM mission to the TIRS instruments. The training
sets of clear-sky and cloudy-sky radiances are drawn from 20 randomly selected
spectra from GMAO simulations in orbital segments of eight cross-track and 250
along-track TIRS scenes, where each orbital segment has a new random draw.
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Figure 2.2: GMAO simulations of precipitable water vapor (PWV) (left) and
lower tropospheric stability (LTS) (right).

The clear-sky radiances are simulated for every TIRS scene - regardless of the
presence of clouds - and will be calculated as part of the post-launch operational
algorithm. A set of 20 random draws from the TIRS scenes for clear and cloudy
skies are shown in Figure 2.3 for the same orbital segment shown in Figures 2.1
and 2.2. While the radiances for cloudy scenes are slightly lower than clear-sky
radiances, there is substantial overlap in their magnitudes making it challenging
to visually distinguish differences between clear and cloudy sky. However, there
are more subtle differences in the spectra that the PC approach is designed to
exploit (see below). This scene is typical of the Arctic region; much cleaner
separation in clear and cloudy sky spectra is observed in the midlatitudes and
tropics (Kahn et al. 2023).

The Similarity index (SI) developed by Maestri et al. (2019) defines the
closeness of a given radiance spectrum to two different training data sets for
clear and cloudy skies; here we apply this method to the GMAO simulations.
The SI uses empirical orthogonal functions (EOFs) and principal components
(PCs) separately derived from the clear and cloudy sky training data sets. The
value of SI is normalized and ranges from -1.0 to +1.0. See below discussions for
details on the calculation of SI. We employ similar terminology used in Maestri
et al. (2019) to describe the method to calculate SI. The SI is defined separately
for clear and cloudy skies:

SIclr(j), j ∈ {1...J}, (2.1)

and

SIcld(j), j ∈ {1...J}, (2.2)

where J is the number of TIRS footprints considered (i.e., the total number in
a segment of an orbital granule, nominally J=2000). The two sets of training
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Figure 2.3: Twenty clear-sky (left) and twenty cloudy-sky (right) training radi-
ances from the GMAO simulations for the orbital segment depicted in Figures
1 and 2. The training methodology for this simulated data set, and the plan
for the post-launch TIRS radiances, are described in Kahn et al. (2023). The
PC-MSK only uses the 23 channels available in filters 2 and 3, following the
same approach used in L2-SSE. Note the substantial overlap in the spectral
shapes and radiance magnitudes between clear and cloudy sky. This highlights
the degree of difficulty in the high latitude regions.

radiances TRclr(ν,t) and TRcld(ν,t) are a function of the wave number ν asso-
ciated with the 23 TIRS channels used in the PC decomposition, and the index,
i denoting the number of training spectra used. We then define the training
eigenvector matrices:

TREMclr(ν, PC) = eig(cov(TRclr(ν, i))) (2.3)

and
TREMcld(ν, PC) = eig(cov(TRcld(ν, i))) (2.4)

There are two sets of EOFs, one for clear-sky and the other for cloudy-
sky. The general idea is that the higher order EOFs will exhibit larger spectral
differences between the two matrices than the lower order EOFs. However,
some of the high order EOFs will no longer reflect geophysical variability and
instead will reflect noise. A maximum number of EOFs are therefore considered
for the purpose of cloud detection. This number will fluctuate between orbital
segments and is discussed in Kahn et al. (2023). A total of 20 PCs are retained
through empirical experimentation. The first six EOFs associated with PC 0 to
5, with additional PC values, are shown in Figure 2.4.

The first few PCs explain the vast majority of the variance. Even though
the higher order PCs explain a very small portion of the variance, they are not
weighted in the Maestri et al. (2019) methodology. The PCs with very little
explained variance have equal weight in the methodology such that more subtle
spectral differences are used to discriminate clear and cloudy TIRS footprints.

The SI is depicted in Figure 2.5 and the histogram is observed to have two
distinct peaks. By definition, the peak on the left is associated with clear sky
while the peak on the right is associated with cloudy sky. Initial algorithm test-
ing by the developers showed that an automated method would be required for
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Figure 2.4: Left column: the first five EOFs for clear (top) and cloudy (bottom)
sky radiance training sets. The first few EOFs are very similar between clear and
cloudy sky, but larger differences appear for successive EOFs. Right column:
the PC values for all EOFs. The PC-MSK uses a local training approach and
thus the EOFs and PCs will change with successive orbital segments (Kahn et
al. 2023).

choosing a threshold to separate clear from cloudy scenes. As described in Kahn
et al. (2023), Otsu’s binary classification approach was selected, as it is numeri-
cally stable, computationally efficient, and consistently ranks as one of the best
algorithms for binary classification of one-dimensional histograms. The two
approaches described in Maestri et al. (2019) (elementary and distributional)
were deemed not appropriate for an operational algorithm and would require
constant re-tuning of clear/cloudy thresholds. As the TIRS footprint is much
larger than MODIS or VIIRS 1-km imagery, a simple clear/cloudy granulation
in the categorization is justified as the skill in detecting clear versus cloud in
difficult scenes is undoubtedly a challenge (e.g., partial cloud cover, thin clouds,
topographical variability, isothermal layers, inversions). An unknown category
straddling the boundary between clear and cloud was considered in the algo-
rithm development stage but was not included as this categorization was difficult
to justify, quantify, and validate.

Maps of PC-MSK, NN-MSK (to be discussed below), SI, and COD-MSK are
shown in Figure 2.6. COD-MSK is a binary cloud mask considered as truth using
a threshold of COD=0.25 to distinguish clear from cloud. The choice of 0.25
follows the same choice made for the NN-MSK development. The performance
of PC-MSK and NN-MSK using hit and miss rates are shown as percentages in
the figure panels. A fuller set of statistics is described in Kahn et al. (2023). The
map of SI helps to visualize the spatial structure of the SI histogram in Figure
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Figure 2.5: Similarity index (SI) for the same scene depicted in earlier figures.
Otsu’s binary classification that separates clear from cloud is shown by the
vertical line. This is a fully automated classification and will vary between
orbital segments. See Kahn et al. (2023) for further discussion.

2.5 and how Otsu’s thresholding is capable of separating clear from cloud.

2.4 NN Mask

Here we describe the design and training procedure of the neural network (NN)-
based cloud mask. A similar approach as that taken in Bertossa et al. (2023) is
used. Training and evaluation are based upon simulated orbit files from GMAO
simulations. A threshold of 0.25 vertically integrated cloud optical depth (COD)
demarcates clear and cloudy scenes, where a value greater than or equal to 0.25
is defined as ‘cloudy’ and a value less than 0.25 is defined as ‘clear’. This value
is chosen based on maximizing the NN’s ability to exploit the sensitivity of the
TIRS measurements, while also preferentially detecting optically thin clouds
(Fig. 2.7. In addition to the valid TIRS channels, the model uses an estimate
of the 2-m temperature and total column water vapor based on the AUX-MET
product. During training, noise is added to both the simulated spectra and the
AUX-MET products. To simulate error in the TIRS spectra, for each channel,
noise is drawn from a Gaussian distribution centered on zero with a standard
deviation equal to that channel’s expected error. To simulate model error in
predicting 2-m temperature, noise is sampled from a Gaussian distribution with
mean 0 and standard deviation of 1 K. To simulate model error in predicting
total column water vapor, a relative error is used where noise is sampled from
a Gaussian distribution with mean 0 and standard deviation of 10% error.

48 simulated granules are used for model training, 4 randomly sampled from
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Figure 2.6: Similarity index (SI) for the same regions depicted in Figures 2.1
and 2.2
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Figure 2.7: (a) The binary cross-entropy loss of neural networks with various
COD thresholds demarcating “clear” vs “cloud” scenes. Solid lines are cubic
functions fit to the evaluated points. Vertical dashed lines represent the TWP
threshold corresponding to an evaluated loss that is 105% of the fit function’s
minimum loss (COD=0.25; horizontal dashed), this helps detect optically thin
clouds. (b) The accuracy of the neural networks corresponding to the various
COD thresholds depicted in (a). Horizontal dashed lines correspond to the
accuracy for the same COD threshold depicted in (a).

23



each month. The loss used for training is binary cross entropy, defined as:

Loss = − 1

|Y∗|
∑[

(1− β)Y∗ log10(Ŷ) + β(1−Y∗)(log10(1− Ŷ))
]

(2.5)

where Y∗ is a binary set representing ‘truth’. Clear is defined to be the null
condition (0) and cloudy the alternate condition (1). Ŷ is the corresponding set

of predicted probabilities by the NN for the cloudy class. Finally, β =
∑

Y∗

|Y∗| ,

adjusts for imbalances between the number of cloudy versus clear scenes in the
training set. For each individual prediction, the first term in Eq. 2.5 is equal to
0 if the scene is clear and the second term is equal to 0 if the scene is cloudy.
This loss function designates that, statistically, the detection of clear and cloudy
scenes should have equal effect on the overall model skill.

The skill of the model is not found to be particularly sensitive to the model
architecture, however, for completeness the structure used for the NN is listed
in Tab. 2.1. The use of batch normalization and dropout layers helps deter
overfitting.

Table 2.1: The neural network structure for the cloud mask NN. Layer levels
may be used as a reference for how inputs progress through the NN. Layer types
and output shape are listed for each layer. The input shape takes the form of
nchannels, referring to the number of ‘clean’ channels for that particular x-track
scene, with two additional inputs for the ingested AUX-MET products.

Baseline NN Structure
Layer Level Type Output Shape

1 Input (None, nchannel+2)
BatchNormalization (None, 52)

2 Dense (None, 256)
Dropout(0.2) (None, 256)

3 Dense (None, 256)
Dropout(0.3) (None, 256)

4 Dense (None, 2)
(softmax activation)

To account for differences between sensors, 16 unique NNs are trained (2
TIRS instruments, each with 8 sensors). Each NN is trained with the same
48 granules, and architectures are identical except for the input layer, which
only ingests the ‘clean’ channels for each sensor. Each NN evaluates only on
its respective sensor and the output is combined to produce the final NN mask.
Since NN training is inherently stochastic, each unique NN is retrained five
times and only the best of the five training sessions (based on loss values for an
independent set of granules not seen during training) is saved for operational
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use. Additional training will take place after real data is collected and an
independent means of validation is available.

Figure 2.8 depicts one of the sixteen NN’s ability to detect clouds as a
function of the estimated cloud top height (eCTH) and the COD. The model
is particularly skillful at detecting high thick clouds. However, as would be
expected, thinner lower clouds are more difficult to detect. Low confidences in
predictions occur near the NN’s COD threshold (0.25) since slight perturbations
in COD may induce spectral signatures that shift the scene from one class to
the other; conversely, high confidences occur well away from this threshold.

2.5 Using PC-MSK and NN-MSK

The ability to detect clouds is highly dependent on cloud type and the atmo-
spheric and surface variability within a given scene. The primary purpose of
L2-MSK is to confidently identify 80-90% of clear-sky scenes for scales of 15-50
km in the Arctic; thus the cloud detection will be optimized for this need. To
ensure clear-sky detection with a high level of confidence, it is recommend that
one uses PC-MSK and ML-MSK together. An uncertainty estimate is avail-
able with ML-MSK, while the SI value and Otsu’s threshold value are reported
with PC-MSK. These additional quantities should provide key additional in-
formation regarding the likelihood of clear-sky or cloudy-sky detected within
a given TIRS scene. Possible approaches that leverage the synergistic use of
PC-MSK and ML-MSK will be tested by the PREFIRE Science Team during
the post-launch checkout phase.

2.6 Validation Plan

Initial validation of PC-MSK and ML-MSK will be performed against the VI-
IRS cloud mask and CrIMSS ECF for orbital segments that are not used in the
formation of the training data sets. As with the identification of ideal train-
ing set radiances, the most optimal comparisons will be limited to small time
differences (∼minutes) between PREFIRE and JPSS. Inevitably, the time re-
striction is a function of variable atmospheric conditions, implying a more (less)
restrictive time difference, for instance, when wind speed is higher (lower). The
meteorological context will leverage the Aux-Met files to examine temporal dif-
ferences between PREFIRE and JPSS coincidences as a function of both wind
speed and direction shear. This initial validation effort will play a crucial role
in optimizing the training data for the operational version of PC-MSK. We ex-
pect that the CrIMSS cloud products to be most similar to those derived from
PREFIRE rather than the VIIRS cloud mask. CrIMSS will be available during
daytime and nighttime observations, while the VIIRS cloud mask will be more
limited at night. The advantage of VIIRS will be the order km-scale cloud cover
and will be essential to quantify complicated scenes.

Surface classification using microwave (MW) channels from the ATMS in-
struments is used to distinguish ocean, ice-free land, ice-covered land, sea ice,
glacier ice, and coastlines apart from each other. MW surface classification
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Figure 2.8: An example evaluation of the NN cloud mask (a) A 2D histogram
of the assigned probability to the “cloud” class by the NN for scenes binned
by estimated cloud-top height (eCTH, determined by the pressure in which the
top-down integrated COD exceeds 0.1.) and the column cloud optical depth
(COD) of the scene. Bins that contain less than 0.1% of the dataset are crossed
and empty bins are gray. True clear scenes lie to the left of the designated COD
threshold, whereas true cloud scenes lie to the right. All true clear scenes are
binned together as having no eCTH (top) and thus are broken down only by a
function of COD. Darker shades of blue indicate that the neural network is on
average very confident that scene bin is cloud. Darker shades of red indicate that
the neural network is on average very confident that scene bin is clear. White
indicates little confidence one way or the other. (b) The detection rate (number
of times correctly predicted “cloud” divided by the number of clouds within
that bin) for cloud scenes as a function of eCTH. The mean cloud detection
rate, over all eCTH levels, is plotted with a vertical dashed line. The clear
detection accuracy is also listed at the top. (c) As (b), but as a function of the
COD of the scene. The mean accuracy of the NN is plotted with a horizontal
dashed line. In (b) and (c), blue bars indicate statistics relating to cloudy scenes,
and red bars indicate statistics relating to clear scenes.
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was previously used for quantifying PREFIRE sampling scenarios (Kahn et al.
2020). For the pre-launch algorithm development, the TIRS radiances simulated
from GMAO data do not reflect real surface type variations. As the develop-
ment of PC-MSK proceeds on actual TIRS data post-launch, the MW surface
classification is anticipated to play a more important role to capture TIRS ra-
diance dependence on surface type. The PC-MSK algorithm may use clear and
cloudy sky training matrices derived for each surface type.
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3 Level 2 Atmospheric Retrieval

PREFIRE Atmospheric Retrieval Algorithm Aronne Merrelli (ATM algorithm
lead), Nathaniel Miller, PREFIRE Science Team August 2022

PREFIRE L2 ATM Algorithm Theoretical Basis Document

3.1 Introduction

This Algorithm Theoretical Basis Document (ATBD) describes the algorithms
used to produce the 2B-ATM (clear sky atmosphere) product for the Polar
Radiant Energy in the Far Infrared Experiment (PREFIRE). The 2B-ATM
algorithm uses data from the Aux-Met (Auxiliary Meteorological analysis), 2B-
MSK (Cloud mask), and the 2B-SFC (surface properties) products as prior
information.

3.2 Instrument Overview

The spectrometer for PREFIRE, the Thermal Infrared Spectrometer (TIRS),
collects spectral radiance measurements across a wavelength range of approxi-
mately 5 to 54 µm with a spectral sampling of 0.84 µm. The light is dispersed
by a grating onto a 64x8 element detector array that measures 8 simultaneous
spectra along the spectrometer slit. The first four channels respond to shortwave
radiance (< 3µm) and are not planned to be part of the calibrated L1B dataset
as there will be no calibration system for these wavelengths and no expectation
of instrument performance. Due to the instrument design, there are two-channel
gaps at approximately 7, 15, and 30 µm, at the boundaries of the order-sorting
filters used to select for specific grating diffraction orders. The layout of the
filters results in 54 usable channels covering most of the thermal infrared range.
The actual flight detectors have individual bad detector elements which will
imply a different number of valid channels between the 8 cross track spectra.
While the spectral resolution is much lower than modern infrared sounders, the
spectral information available, particularly in the Far Infrared Red (FIR) wa-
ter vapor rotational absorption band, does allow for coarse vertical resolution
temperature and water vapor profiles.

For the currently planned orbit, the ground footprint shapes of the 8 TIRS
scenes are approximately 10x30 km (cross-track by along-track) rectangles, with
the 8 scenes separated cross-track by 20 km gaps between them. The temporal
sampling rate of TIRS with the currently planned orbit altitude results in along-
track overlap of approximately 7/8 between consecutive measurements. For the
baseline ATM algorithm, no attempt is made to combine these observations
in anyway. In other words, each spectrum is treated as an entirely indepen-
dent measurement. Future research will investigate whether the overlapping
measurements can be combined in some way to reduce sensor noise.

Figure 3.1 shows a summary of the spectral response functions (SRFs)
compared to a clear sky, standard atmosphere emission spectrum. The SRFs
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Figure 3.1: The TIRS SRFs grouped by the order sorting filter. In each panel,
the upper plot is an emission spectrum from a standard atmosphere for com-
parison.

grouped according to the order sorting filter. Note the two channels (n) in the
gaps between each grouping (n = 8, 9, 17, 18, 35, 36). Figure ?? shows sample
weighting functions, for a standard atmosphere, across the primary wavelengths
used for the ATM retrieval.

3.3 Overview

The ATM algorithm is a physical retrieval implemented with a standard optimal
estimation approach (Rodgers, 2000) with a Levenberg-Marquardt parameter to
adjust the weighting of the a priori and measurement information during iter-
ation. The state vector consists of the temperature and water vapor vertical
profiles and the surface temperature. The remaining relevant geophysical prop-
erties are taken as fixed from the values in the a priori datasets. The ATM
algorithm is intended to run in clear sky only, so the processing is run only on
the measurements identified as clear by the 2B-MSK product.

A priori information is derived from several sources in the PREFIRE SPDS
processing chain and input into the 2B ATM algorithm, in order to create a
final output data file. The output data file contains the final retrieval state at
the coarse vertical resolution used in the 2B-ATM output product. Figure 3.3
shows the overall data flow.
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Figure 3.2: Sample TIRS weighting functions for the standard subarctic winter
atmosphere, for n = 4 – 40.

Figure 3.3: Algorithm Flowchart
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3.4 Spectral Radiance Forward Model

The forward model used within the retrieval algorithm is the Principal-Components
based Radiative Transfer Model (PCRTM) V3.4 (Liu et al., 2006). The PCRTM
is an efficient and accurate plane parallel RT model, and uses a set of pre-
computed Principal Components (PCs) describing a specific spectrometer sam-
pling grid. The V3.4 implementation supports user defined profiles for the six
primary infrared active molecules: water vapor, CO2, O3, CH4, CO and N2O. A
number of other trace gases (such as CFCs) are included with fixed concentra-
tion profiles. The PCRTM can compute both the forward modeled radiance, as
well as Jacobians for surface temperature, temperature profile, and concentra-
tion profiles for the six variable absorbers. A standard set of 101 fixed pressure
levels defines the internal leveling grid for the forward model. To cover the
FIR wavelengths measured by TIRS, we use a set of pre-computed coefficients
constructed for a theoretical interferometer covering the wavenumber range 50
– 2760 cm–1 at a 0.5 cm–1 sampling grid. The high spectral resolution forward
modeled spectra are converted to a wavelength grid and the TIRS channel Spec-
tral Response Functions (SRF) are applied to generate TIRS channel radiances.

For the ATM algorithm, the PCRTM is operated in a clear sky only mode,
though the PCRTM does contain ice and water cloud spectral emissivity models.
This version of the PCRTM does not include capability to model the spectral
reflectance, so the output will include only the thermal emission.

3.5 State and Measurement Vectors

The retrieved state vector for the ATM algorithm includes the temperature
profile, T, the logarithm of the water vapor mass mixing ratio profile, ln(Q),
and the surface temperature Ts, combined into a single joint as follows:

x = [T; ln(Q);Ts] (3.1)

The profile variables are defined in the full PCRTM vertical level resolution, but
for only the levels, j, with pressures less than the surface pressure as defined
by the Aux-Met product (in other words, only the levels above the surface
topography are retrieved). This implies that the typical number of retrieved
levels will be slightly less than 101, or as few as 80 for very high-altitude surface
topography. The below surface levels are set to copies of the lowest altitude air
temperature and water vapor mixing ratio. The below-surface values are input
to PCRTM for the forward radiance calculation, but they are not included in the
state vector meaning the values do not change during optimization. (Note that
the first below surface level helps define the temperature and gas concentration
of the partial layer containing the surface, so the below surface values do impact
the modeled radiance).

The measurement vector is the measured spectral radiance, as described in
the Instrument Overview, TIRS spectra will contain 54 valid spectral channels,
less any identified bad detector elements. The shortest wavelength channels are
not planned to be used in the ATM algorithm, in order to limit the impact of
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scattered solar radiation on the algorithm and limit any day/night biases that
would arise. Our forward model (PCRTM v3.4) does not model the spectral
reflectance, so these channels at the short wavelength end would require signif-
icant extra modeling efforts to be utilized in the algorithm. In addition, the
information content for water vapor and temperature profiling of these channels
is a small fraction of the total, so removing these channels from the retrieval
does not cause a significant performance degradation. If the detector at n = 6
is not flagged as poor quality, then we will we pay close attention its behavior in
the flight data as this channel would be sensitive to both scattered solar radia-
tion and non-Local Thermodynamic Equilibrium (LTE) emission in the 4.3 µm
CO2 absorption band (DeSouza-Machado et al. 2007). In addition, the longest
wavelength channels (wavelengths larger than 40 µm) have relatively low signal
to noise, and it may be necessary to remove several of these channels depending
on their behavior in flight.

3.6 A Priori data

The OE algorithm requires a priori covariance matrices and mean values de-
scribing the expected probability distribution of the state vector before the
measurement is examined. Since our a priori is derived from Auxiliary meteo-
rological analysis data, the a priori mean will be direct copies of analysis fields
interpolated to the TIRS observation location and time. The covariance should
then represent our expectation of the probability distribution errors in the me-
teorological analysis fields relative to the true values. This error distribution
should include error in the analysis field itself, as well as error incurred from the
interpolation of the analysis grid and time to the actual observation location and
time. In practice, this covariance is very difficult to accurately estimate. As an
empirical approximation, we can compute distributions of analysis errors from
comparing an analysis time step to the average of the bracketing time steps.
For example, we can compare the field at 12UTC to the average of the fields at
09UTC and 15UTC (a ± 3 hour interpolation), or 06 and 18 UTC (a ± 6 hour
interpolation). The averaged field is a proxy for the interpolation that will be
done between a set of two analysis time steps and the arbitrary TIRS measure-
ment time. This procedure should capture that part of the interpolation error,
although it will not include any spatial interpolation. The covariance of these
differences should capture realistic vertical error correlations, assuming the at-
mospheric transport within the analysis data is realistic. However, since this is
not comparing the analysis data to an actual independent “truth” dataset, this
method is likely to be an underestimate of the true error.

The SDPS will initially produce Aux-Met products from the GEOS-IT anal-
ysis data stream from NASA GMAO (Lucchesi, 2015) which will be available
during the PREFIRE mission. To compute our initial covariance matrices, we
used the above procedure on GEOS5 FP-IT data, which was available during
algorithm development, before GEOS-IT was available. This data source has a
time step of 3 hours for the three-dimensional variables (the temperature and
water vapor fields), so in practice the interpolation time window would be a
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Parameter Upper atmosphere Lower atmosphere
Surface T variance (2.0 K)2

T variance (0.5 K)2 (2.0 K)2

ln(Q) variance (0.3)2 (0.6)2

T correlation scale 50 hPa 100 hPa
ln(Q) correlation scale 50 hPa 100 hPa

Table 3.1: Parameters defining the a priori covariance matrices for temperature
and water vapor.

maximum of ± 1.5 hours to the arbitrary TIRS measurement times. We chose
to use the interpolation from the ± 6 hour interpolation window as a way to
compute a conservative estimate of the a priori covariance. In other words,
this procedure will generate larger covariances in order to capture some of the
known additional error sources that are not captured by the method. Finally,
we approximate the computed covariances with an autoregressive correlation
model (Lerner et al. 2003). This covariance model uses an exponential correla-
tion model, so the covariance between two levels i and j, with variances σ2

i and
σ2
j , pressures pi and pj and a correlation scale pL is given by (following Lerner

et al. 2003, equation 7):

Sa(i, j) = σiσj exp[−|pi − pj |/pL] (3.2)

Because the information content of TIRS observations is very low for the up-
per atmosphere (p < 100 hPa), we use a correlation scale length in pressure
coordinates that enforces a high degree of correlation among these upper atmo-
sphere levels. Different values are used for the correlation scales and variance in
the lower and upper atmosphere, and a logistic function smooths the transition
between the two regimes. Table 3.1 gives the values of variances and correla-
tion scales in the upper and lower atmosphere used in the analytic covariance
model. Figure 3.4 shows the shape of the correlation structure and variance for
the temperature a priori matrix. The correlation matrix for ln(Q), is the same,
and no correlation is assumed between temperature and water vapor.

In addition to the temperature and water vapor profiles that are present in
the retrieval state vector, there are many additional geophysical variables that
can impact the modeled radiance. These other variables have low information
content in the TIRS measurements, so cannot be retrieved, but should be speci-
fied accurately to minimize modeling errors. All of these additional variables are
not included in the state vector, so their values will be fixed during optimiza-
tion. These include the surface spectral emissivity and profiles of other infrared
active molecules (CO2, O3, CH4, CO and N2O). The surface spectral emissivity
will be taken the initial retrieval from the 2B-SFC product. For CO and N2O,
the fixed profile from the standard atmosphere is assumed for all observations.
Since the O3 profile has strong vertical and temporal variation, it will be taken
from the Aux-Met product, after passing through the same temporal and spatial
interpolation as the temperature and water vapor profiles. For CO2 and CH4, a
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Figure 3.4: A priori temperature correlation and variance used in the retrieval.
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fixed volume mixing ratio profile is used, based on a climatology developed from
the Copernicus Atmospheric Modeling System (CAMS) EGG4 greenhouse gas
reanalysis product (Agust́ı-Pareneda et al., 2022). The climatology models the
EGG4 XCO2 and XCH4 (the total column-averaged dry air mole fractions) as
a function of latitude and time. To compute the climatology, the daily EGG4
data from 2003 - 2020 was first averaged across longitudes to produce the zonal
averages with time. The zonal averaged time series were then fit with harmonic
series (sin + cos) and polynomial functions of time. These coefficients were then
smoothed across latitudes with splines in order to reduce the overall dimension-
ality of climatology fits and to reduce noise across the individual latitude bands.
Both CO2 and CH4 use linear polynomials. The CO2 harmonic fit uses three
terms, to fit annual and sub-annual cycles, while the CH4 harmonic fit only
uses one term. For each TIRS observation, the spline fits are evaluated at the
observation latitude in order to determine the harmonic and polynomial coeffi-
cients, which are then evaluated to determine the CO2 and CH4 prior values.
For an example with CO2, assuming the spline fits yield the linear polynomial
coefficients c0, c1 and the harmonic coefficients an, bn, then the a priori CO2

will be:

CO2 = c0 + c1t+

3∑
n=1

(an sin(nt) + bn cos(nt)) (3.3)

The evaluation for the CH4 a priori value proceeds in a similar fashion,
using fewer harmonic terms.

3.7 Inversion Method

The inversion method used in the ATM algorithm is a standard Bayesian non-
linear optimal estimation (OE) approach. Starting from an initial guess, the
algorithm iterates the state vector, x value, recomputing the forward modeled
spectral radiance and Jacobians at each step. The state vector updates at each
iteration are the standard linear cost-function minimization steps. The method
is similar to the standard Newton’s method, with an additional Levenberg-
Marquardt parameter to adjust the weighting of the a priori and measurement
information during iteration (Rodgers 2000). This implementation closely fol-
lows the OE solver method used in the NASA OCO-2 L2 algorithm (Crisp et
al., 2021).

The cost function is from the standard OE formalism, following from an
assumed a priori state vector mean (xa) and covariance (Sa), a measurement
vector (y) and measurement error covariance (Sε), and a forward model function
(F). For a particular iteration where the state vector value is xi, the cost
function (c) is given by:

c = (y −F(xi))
TSε

−1(y −F(xi)) + (xi − xa)TSa
−1(xi − xa) (3.4)

At each iteration, the forward model returns the modeled measurement (F(xi))
as well as the Jacobian at the state vector value (Ki). These are used to compute
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the state update, dxi+1. The actual state update is computed using a linear
matrix solver (the linalg.solve function in NumPy, which utilizes LAPACK).
The state update equation is given by:

[(1+γ)Sa
−1+Ki

TSε
−1Ki]dxi+1 = [Ki

TSε
−1(y−F(xi))+Sa

−1(xi−xa)] (3.5)

These quantities are computed for a scaled state vector, using the matrix
M which contains the inverse square root of the diagonal of Sa along the diag-
onal. Multiplying by M scales the vector by dividing by the per-state variable
standard deviation contained in the Sa matrix. This yields a slightly different
form of equation 3.5, operating in the scaled state vector space:

M =

Sa,(1,1) 0 0
0 . . . 0
0 0 Sa,(k,k)

1/2

(3.6)

S̃a =M−1SaM−1 (3.7)

x̃ =M−1x (3.8)

[(1+γ)S̃−1
a +MKi

TSε
−1KiM]dx̃i+1 = [MKi

TSε
−1(y−F(xi))+ S̃−1

a (x̃a− x̃i)]
(3.9)

After each iteration, the linearity of the forward model and cost function
are assessed by comparing the value of the cost function after the state update
(ci+1) with a forecasted value of the cost function, assuming linearity, from the
previous state value. The forecast value of the cost function relies on linear
prediction of y at the current state:

F(xi+1) ≈ F(xi) + Kidxi+1 (3.10)

The cost function forecast, cFC is computed from equation 3.4, using equa-
tion 3.10 for F(xi+1) and xi+1 ≈ xi +dxi+1. The ratio between the actual cost
function change and the forecast cost function change, R, is calculated as:

R =
(ci − ci+1)

(ci − cFC,i+1)
(3.11)

For a well-behaved update, the cost function at iteration i+1 should be
smaller than i, and if it is linear then it should be close to the value of the
forecast. In this case the ratio R should be close to 1. On the other extreme,
for poorly-behaved updates, the cost function value may not change (R = 0)
or even increase after the update (R < 0). Given these limiting values for
R, we assign one of four labels for the state update: divergent updates (R <
0.0001), moderately nonlinear updates (0.0001 < R < 0.25), weakly nonlinear
(0.25 < R < 0.75), or linear updates (R > 0.75). During iteration, a divergent
update triggers a change to the Levenberg-Marquardt parameter (λ0 see below),
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and the state update is discarded and recomputed with a new value of the λ0

parameter. All other update types (R > 0.0001) will update the state vector
using dxi+1.

The Levenberg-Marquardt λ0 parameter controls a relative weighting be-
tween the a priori state estimate and the measurement. We start with a value
of 10, and then update it during iteration with the following criteria, based on
the classification of the state update by the cost function prediction method
described above: For divergent updates or moderately nonlinear updates, λ0

is increased by a factor of 10; for weakly nonlinear updates, λ0 is unchanged,
and finally, for linear updates, λ0 is reduced by a factor of 2. The iteration is
stopped when one of three exit criteria is reached: 1) the maximum number
of iterations was reached, 2) the maximum number of divergent updates was
reached, or 3) the state update was smaller than a threshold value. Retrievals
that stop iteration by the third criteria are considered converged. The third
criterion is evaluated by computing the size of the squared scaled state vector
update relative to the current posterior error covariance, divided by the number
state vector elements. This quantity (z) is compared against a threshold value
of 0.1 to determine convergence:

z =
1

k
dx̃T

i+1S̃−1dx̃i+1 (3.12)

Each one of the criteria is set by an adjustable parameter that will be con-
tinually re-evaluated. Each of the thresholds can represent tradeoffs between
algorithm throughput, yield, and accuracy, that will not be fully characterizable
with pre-flight simulation testing. For example, more retrievals will converge
if the iteration limit is increased, or higher accuracy might be obtained with
smaller state update thresholds.

Finally, when the iterative algorithm stops, we perform a final forward model
calculation to get the value of F(x′) at the retrieved state for the purposes of
a χ2 calculation to evaluate the goodness of fit and to compute the spectral
residuals. The χ2 is computed in the conventional way, given by equation 3.13.
The number of degrees of freedom are taken from the trace of the averaging
kernel matrix, A, at the final state vector value. This allows for the calculation
of the reduced χ2, which is expected to be near a value of 1 for a successful
retrieval. In the following equation, k is the number of variables in the state
vector, and d is the number of degrees of freedom in the retrieval.

χ2
ν =

(y −F(x̃))Sε
−1(y −F(x̃))

k − d
(3.13)

While the actual measurement vector used in the retrieval will be a subset
of the total TIRS channels, the final forward model calculation will produce
modeled radiances for all 54 valid channels. The full spectral model will be
used for quality assessment as described in the section below.
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3.8 Output processing

3.8.1 Layer specification of output profiles

Because the information content of the TIRS measurement is relatively low, the
full vertical resolution profiles (the PCRTM standard 101 levels) are far more
densely spaced than what is needed to capture the actual information content.
This is particularly true in the upper atmosphere levels, where the full resolution
includes 44 levels below 100 hPa. Before creating the final output product,
the full resolution levels are grouped and combined into a smaller number of
layers. A general heuristic is used to determine an appropriate grouping of the
high vertical resolution levels based on the information content profile at the
high vertical resolution. Starting from the TOA level, the information content
profile is integrated downwards (with a cumulative sum), stopping when the
total information reaches some threshold level. The threshold level should be
less than one, otherwise the information content total would suggest the retrieval
would have enough degrees of freedom for signal to retrieve partially independent
sub-layers within the layer. Once the threshold level is surpassed, the level
defines the bottom level that will be used in the combined layer. The process
is repeated with the current level as the top level of the next combined layer.

The level combination process produces different level groupings for each
individual profile. In particular, the process would produce a smaller number of
combined layers for low information content profiles (high surface altitude, dry
conditions). We desired a single layer specification that is applicable globally.
Therefore, we determined the layer specification from an ensemble of tropical
ocean profiles from ERA-5 reanalysis, as these will tend to have the highest total
information content, and we determined a single set that is approximately the
number returned from the average temperature profile. For simplicity, the same
layer specification is applied to both the temperature and water vapor profile.

When the high-resolution profiles are combined, each low vertical resolution
layer value is the mean of the associated high-resolution grouping. The posterior
covariance matrix is computed by block averaging according to the same layer
specification. The layer specification is shown in Table 3.2. The pressure bound-
aries of the coarse output levels are specified as the half-levels between the lower
and upper pressure levels of the neighboring combined layers. Note that nearly
the entire upper atmosphere (p < 150 hPa) is combined into one coarse output
layer. The troposphere is then divided into six layers with pressure thickness
ranging from approximately 120 – 170 hPa.

3.8.2 Quality assessment variables

The optimal estimation algorithm outputs several status variables that are used
for quality assessment. These are combined into two quality variables. First, a
summary integer flag (atm_quality_flag) with categorical values is provided.
A second bit-flag (atm_qc_bitflags) that includes more detailed status infor-
mation is included in the product. The summary integer flag should be sufficient
for most uses, with the additional detail in the bit flags is available for more
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Combined layer PCRTM level Pressure range Pressure thickness
number number range (hPa) (hPa)

1 1 – 51 0.005 – 156 156
2 52 – 64 156 – 307 151
3 65 – 72 307 – 433 126
4 73 – 79 433 – 565 132
5 80 – 86 565 – 718 153
6 87 – 93 718 – 892 174
7 94 – 101 892 – 1100 208

Table 3.2: Specification of the combined layers for the output product.

status value Description
0 Best quality, converged retrieval
1 Poor quality, converged retrieval

(reduced χ2 exceeds threshold)
2 Retrieval did not converge
10 Retrieval not attempted due to presence of

clouds as specified by Cloud flag in MSK product

Table 3.3: Description of ATM integer quality flag

advanced analysis of the product. The details of the flags will likely change with
on-orbit data, but the intention is for the summary integer flag to retain the
same definition, while the bit flags will likely include additional status conditions
as needed.

The summary integer flag records the four main status conditions for the
ATM algorithm within each TIRS observation. In brief, these are that no re-
trieval was attempted, or that a retrieval was attempted resulting in one of
three outcomes: a good quality converged retrieval, a poorer quality converged
retrieval, or an unconverged retrieval. These are listed in table 3.3 with the cor-
responding integer values. The bit flags give more detail about the convergence
status, which can fail because either the diverging step or iteration count limits
were reached, or an unphysical state vector value was reached during iteration.
Additional status bits may be added once on-orbit data is analyzed. Table 3.4
describes the current set of bit flags within the pre-launch algorithm.

Threshold values for these QA variables are still under assessment using sim-
ulated data, and they will be re-evaluated as further refinements of the preflight
noise models from TIRS become available. Ultimately, the thresholds will be
reassessed again when flight data becomes available.

As described in the earlier section, when the retrieval is performed, the for-
ward model is used to create a full spectral model even if a subset of the channels
was used in the retrieval. If there are detector elements that have unexpected
behavior on orbit, the modeled radiance may allow for assessment of the ra-
diometric response relative to the “good” detector elements. For example, a
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bit number Status description
0 reduced χ2 threshold exceeded
1 retrieval exceeded iteration count limit
2 retrieval exceeded diverging step count limit
3 retrieval went outside allowable state vector range
15 retrieval not attempted, due to cloud mask

Table 3.4: Descriptions of ATM quality flag bits

problematic channel could be evaluated by excluding it from the retrieval and
analyzing the residuals (modeled minus observed radiance) in the retrieval out-
put. These spectral residuals will be continually monitored during the mission.
Furthermore, bulk statistics based on the fraction of converged retrievals and
the averaged reduced χ2 will be used to assess overall retrieval product quality.
These values will be visualized separately for the eight TIRS spectra. Differ-
ences between the average performance among the eight spectra (for example,
the distribution of χ2 values) can indicate problems at the L1B calibration level.

3.9 Retrieval analysis: Information content and Uncer-
tainty Characterization

Tests were performed with simulated measurements in order to assess the per-
formance and uncertainties computed by the retrieval algorithm. The simu-
lated measurements were generated from radiance simulations using the same
forward model used in the retrieval (PCRTM, as described earlier), based on at-
mospheric profiles from ERA-5 reanalysis data (Hersbach et al. 2020) produced
by the European Centre for Medium-range Weather Forecasts. The region lo-
cations reflect that PREFIRE is a polar-focused mission but will also produce
global products. Three of the regions are polar (Arctic Ocean, Greenland Ice
Sheet, Antarctica) and the fourth region is near the warm pool in the tropical
Pacific Ocean. The full set of profiles thus spans a wide range of polar climate
conditions, and also spans the range of cold/dry and warm/moist extremes we
expect to observe globally. Figure 3.5 shows the locations of the four regions.
For each region, we drew 8000 random samples from 2016 to yield a testing en-
semble. Each profile produces a simulated radiance and Jacobian from PCRTM,
which is then processed through the standard “Degrees of Freedom for Signal”
(DFS) analysis (Rodgers, 2000) to assess the information content of the temper-
ature and water vapor profiles. The TIRS information content is very strongly
modified by the total water vapor amount, since the temperature information
is relatively low because of the masked channels at 15 µm. Figure 3.6 shows
a joint histogram of the DFS and total column water vapor (CWV) across the
entire 32,000 profile ensemble.

The profiles are used to directly generate simulated observations with repre-
sentative sensor noise, but then the retrieval is run with a perturbed profile as
the first guess in conjunction with these simulated observations. The perturba-
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Figure 3.5: Regions where profile ensembles were extracted from ERA-5 reanal-
ysis data: Upper left, Arctic Ocean (70oN – 80oN, 5oW – 5oE); upper right,
tropical ocean (5oS – 5oN, 160oW – 170oE); lower left, Greenland (70oN – 80oN,
45oW – 35oE); Antarctica (80oS – 85oS). Images are from NASA Worldview.
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(a) Linear x-scale for CWV. (b) Logarithmic x-scale for CWV.

Figure 3.6: Joint and marginal histograms of retrieval DFS (for temperature and
water vapor profiles) versus a linear or logarithmic scaled total column water
vapor (CWV). The data from the three polar regions populates a similar region
in these two parameters, with the tropical data separated to larger values in
both DFS and PWV.

tion is created as a correlated random variable, drawn from a covariance nearly
equal to the prior. The same correlation structure is used, but the variance
is constant with height rather than decreasing to a lower value in the upper
atmosphere.

The retrieval is run on all selected profiles, and the statistics are pooled
within each regional ensemble. The difference between retrieved and true profiles
is characterized in terms of the precision (standard deviation of the differences)
and accuracy or bias (mean of the differences). Furthermore, we examine the
accuracy of the retrieval algorithm’s reported uncertainty by computing the
standard deviation of the scaled differences (z):

z = (x̂− xtrue)/εx (3.14)

where the uncertainty (εx) is the posterior value computed by the retrieval
algorithm. With accurate uncertainties, this quantity should be a normally
distributed value with unit variance, meaning the standard deviation should
converge to 1.

Figure 3.7 shows the results for the temperature profiles from the Arctic
Ocean ensemble. The results from the other three regional ensembles are sim-
ilar and omitted for brevity. The results are generally within expectations. In
general, within the troposphere the reduction in uncertainty relative to the prior
in the full set of retrieval levels ranges from 0.1 to 0.4 K. The level combining
does increase the precision slightly. For example, the standard deviation in Fig-
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Figure 3.7: Evaluation statistics for temperature for the Arctic Ocean ensemble:
(a) retrieval precision estimate, from the standard deviation of retrieval – truth
differences; (b) retrieval accuracy estimate, from the mean of the differences;
(c) accuracy of uncertainties, from the standard deviation of the scaled uncer-
tainties. The original 101-level and combined 7-layer profiles are shown, with
the surface temperature display as the separated single point at p=1050 hPa.

ure 3.7(a) drops from about 1.8 to 1.5 K, due to averaging out of uncorrelated
error among the combined levels. The biases (middle column) are small, gen-
erally 0.1 K or less, with the larger biases generally occurring near the surface.
Note that the scaled uncertainty is very close to 1 for the original and combined
levels throughout the troposphere, demonstrating that the post processing cal-
culations are handling the uncertainty propagation accurately through the level
combining process. The scaled uncertainty increases to larger values in the up-
per atmosphere, here due to the perturbations being larger than the a priori
assumptions. The measurements also have very little information about the up-
per atmosphere levels (note in ??(a) that the standard deviation does not drop
from the perturbation amplitude of 2K), so the retrieved state is very close to
the prior.

Figure 3.8 shows the results for the water vapor profiles, displayed in a
similar way as the temperature results in Figure 3.7. Since the water vapor
profile retrieval is done in ln(Q) space, the accuracy and precision estimates
are also shown in the ln(Q) space. The transformation back to linear space
will introduce a bias itself, so it is important to isolate any possible bias from
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Figure 3.8: Water vapor evaluation statistics. Similar to Figure ?? (for temper-
ature) but using the retrieval statistics in ln(Q) space. The separated point at
p=1050 is the results for the CWV.

the retrieval itself. Displaying the results in ln(Q) space also makes it easy to
relate to the variance of the a priori. The results for water vapor are largely the
same as temperature, and there is again good consistency between the regional
ensembles.

The primary output variable for the retrieval is the column water vapor
(CWV). The CWV is simply the vertical integral of the water vapor profile, but
it is important to ensure the uncertainty propagation through the integration
is accurate. In Figure 3.8(c), the scaled uncertainties for the CWV computed
from the original 101-level profile are slightly high, but after level combination
the CWV integral uncertainty is very accurate. Table 3.5 lists the final CWV
uncertainties observed across the four regional ensembles and gives a rough
estimate of the overall uncertainty of global CWV estimates from the ATM
retrieval.

3.10 Validation Plan

Comparisons of ground-based and air-borne measurements to PREFIRE wa-
ter vapor level 2 products provide an independent gauge of the accuracy of
the retrievals. Validation sources are critical to verifying the retrieved val-
ues are within the reported uncertainty. Ground-based stations, situated in
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Antarctica Greenland Arctic Ocean Tropical Ocean
Mean CWV [cm] 0.111 0.201 0.880 4.92
Standard dev. [cm] 0.056 0.082 0.327 0.89
Fractional uncertainty 51% 41% 37% 18%
(Std. dev./mean)

Table 3.5: Uncertainty estimates of column water vapor from the ATM retrieval.

the Arctic and Antarctica, have a lot of variation of data availability and
measurement types. Direct measurements of the temperature and humidity
profiles throughout the troposphere via radiosondes are extremely valuable,
usually occur only once or twice a day at a given station. Sub-setting PRE-
FIRE overpasses with station locations and known launch times throughout
the mission provides a repository of data useful for statistical analysis. We
will utilize the Integrated Global Radiosonde Archive (IGRA) v2 (Durre et
al. 2006) which includes a consolidated distribution of radiosonde observations
(ftp://ftp.ncdc.noaa.gov/pub/data/igra). Stations in Antarctica and the Arctic
are most pertinent for the validation of PREFIRE products. In Antarctica, a
majority of active stations in the IGRA are located along the coast as seen in
Figure 3.9. The 14 stations labeled in Figure 3.9 will be used during clear-sky
scenes to compare retrieved specific humidity profiles to direct measurements
from radiosondes. In addition, column water vapor (CWV) estimates will be
compared to the integrated water vapor from the radiosondes. The station lo-
cated at the South Pole is not included as that latitude falls outside of the orbital
range of PREFIRE. Specific station data usage is subject to data quality-control
tests and availability over the mission period.

In the Arctic, there are 63 currently active stations in the IGRA that av-
erage one or more radiosonde launches per day and are north of 60oN (Figure
3.10). Similar analysis to the Antarctic sites will be performed by comparing
the Northern hemisphere sites to the subsampled PREFIRE data. In addition,
the three sites labeled in Figure ?? have instruments designed to measure addi-
tional atmosphere state information, including high temporal resolution PWV
estimates from microwave radiometers and various cloud properties. Specific
station data usage is subject to data quality control tests and availability over
the mission period.

The Simultaneous Nadir Overpass (SNO) method allows for comparison be-
tween PREFIRE and other polar-orbiting satellites (e.g., Cao et al. 2005) when
the two similar nadir overpasses occur within small time difference. The Cross-
track Infrared Sounder (CrIS) and Infrared Atmospheric Sounding Interferome-
ter (IASI) derived products provide the ability to directly compare water vapor
retrievals via SNOs. These comparisons of similar Earth scenes bring to light
potential calibration issues, possible biases in water vapor retrievals, or scene
dependent discrepancies.
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Figure 3.9: IGRA station locations around Antarctica.
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Figure 3.10: IGRA station locations around the Arctic Ocean.
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4 Level 2 Spectral Emissivity

Optimal estimation retrieval of surface spectral emissivity Algorithm Theoreti-
cal Basis Document Yan Xie, Xianglei Huang and Xiuhong Chen April 9, 2021

Optimal estimation retrieval of surface spectral emissivity Theoretical
Basis Document

4.1 Introduction

4.1.1 Purpose of preparing this document

This algorithm theoretical basis document (ATBD) describes the algorithm
based on optimal estimation for the retrieval of surface spectral emissivity from
radiance spectrum at the top-of-atmosphere (TOA). Specifically, this document
describes the data, forward modeling, algorithm details and validation results
of the retrieval study.

4.2 Data and Forward Modeling

4.2.1 ERA5 reanalysis data

The latest European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA5 reanalysis 6-hourly data (Hersbach et al. 2020) are used to simulate
clear-sky PREFIRE radiances at nadir view. Surface temperatures, atmospheric
temperature and humidity profiles of four months (January, April, July and
October 2005) in the Arctic from ERA5 dataset will be used for the validation
of surface spectral emissivity retrieval algorithm.

4.2.2 Band-by-Band surface emissivity dataset

A band-by-band surface emissivity dataset developed by Huang et al. (2016) is
used in the study. This monthly-dependent global surface emissivity database is
derived from first principles and observations, covering both mid-IR and far-IR
at a 0.5o× 0.5o spatial resolution.

4.2.3 PCRTM

Forward simulations of radiance spectrum at TOA are performed using the
Principal Component Radiative Transfer Model (PCRTM) (Liu et al. 2006)
because it is both computationally affordable and accurate. In this study, the
PCRTM is employed to generate the synthetic radiances and Jacobians on the
PREFIRE spectrum from 5 to 45µm at 0.86µm resolution. Detailed descriptions
of the PCRTM are identical to Chapter 5 in the PREFIRE Spectral Flux ATBD
by Xianglei Huang and Xiuhong Chen.
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n λn νn Transmittance Transmittance
(µm) (cm−1) in January in July

10 8.44 [1246.88, 1128.67] 0.85 0.73
12 10.13 [1030.93, 947.87] 0.80 0.73
13 10.97 [947.87, 877.96] 0.96 0.87
14 11.82 [877.96, 816.99] 0.96 0.83
15 12.66 [816.99, 764.53] 0.83 0.66
16 13.50 [764.53, 718.39] 0.48 0.35
20 16.88 [607.90, 578.03] 0.23 0.06
21 17.72 [578.03, 551.27] 0.45 0.10
22 18.57 [551.27, 526.59] 0.47 0.09
23 19.6 [526.59, 504.29] 0.39 0.05
24 20.25 [504.29, 483.79] 0.34 0.03
25 21.10 [483.79, 464.68] 0.28 0.02
26 21.94 [464.68, 447.23] 0.20 0.01
27 22.78 [447.23, 431.03] 0.16 0.00

Table 4.1: PREFIRE channels selected for the surface spectral emissivity re-
trieval. The atmospheric transmittances are calculated using MODTRAN5 with
monthly and area mean profiles from ERA5 in January and July 2005 over the
Arctic Ocean (73-77oN, 0-360oE).

4.3 Algorithm

?? demonstrates the flowchart of the surface emissivity algorithm.

4.3.1 PREFIRE channels selection

In this study, 14 PREFIRE channels in mid-IR and far-IR are selected out for
the retrieval of surface spectral emissivity (Table 4.1). For monthly mean of
ERA5 6-hourly profiles in Arctic Ocean, the transmittances in July are smaller
than those in January, mostly due to the increase of water vapor abundance.

4.3.2 Optimal estimation retrieval

Optimal estimation method is a physical retrieval algorithm based on the Bayes’
theorem.

(P (x | y) =
(P (y | x)P (x))

P (y)
(4.1)

P (x|y) denotes the probability of a specific state x given the observation y and
is known as the a posteriori probability density function (pdf). The state being
optimized includes the geophysical variables:

{Ts, εn} ∈ x,y (4.2)

The optimal estimation retrieval method seeks the x which maximizes this a
posteriori pdf. P (x|y) can be calculated using the likelihood of observations
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given a specific state P (y|x) and the a priori probability distribution of the
state P (x). P (y) functions as a normalization term and is not required in
practice.

Observations y at TOA contain both radiances and the measurement noises.
The PREFIRE observations are simulated by adding synthetic measurement
noise ε to the clear-sky spectral radiances calculated by the PCRTM.

y = F(x) + ε (4.3)

Gaussian distribution is widely used to model the pdfs due to its generality
and convenience (Rodgers 2000). In this study, the likelihood P (y|x) and the a
priori pdf P (x) are assumed to be Gaussian. As a consequence, the a posteriori
pdf P (x|y) also follows a Gaussian distribution.

A priori : x ≈ N (xa,Sa)
Likelihood: y|x ≈ N (F(x), Sε)
A posteriori : x|y ≈ N (x̂, Ŝ)

xa and Sa are the a priori mean and covariance matrix of the state x, which
represents the knowledge of state variables before observations. The observation
y is composed of signals from the PCRTM forward model F given a specific
state x and the noise quantified by the measurement error covariance matrix
Sε.

A priori knowledge of the state x can be obtained from climatological data,
laboratory measurements or empirical analysis. In this study, the a priori mean
xa of surface spectral emissivity are set to 0.95 out of simplicity. The initial
guess used in the iteration x0 is set equal to the a priori mean xa. The a priori
covariance matrix Sa is derived from a recently developed surface emissivity
database covering the far-IR spectrum (Huang et al. 2016). This global surface
emissivity dataset is computed based on observations and first principles for
each month at a 0.5o×0.5o spatial resolution. Monthly surface spectral emis-
sivity at nadir view (0o) is first converted to the PREFIRE spectrum. For each
PREFIRE channel, find the dataset spectral grids which fall within the channel
range. Surface emissivity on the PREFIRE channel is computed as the mean
of observationally based surface emissivity at corresponding spectral grids.

Surface spectral emissivity dataset in the Arctic (60-90oN, 0-360oE) for all
months are used to calculate the surface emissivity covariance matrix. The a
priori covariance matrix Sa is generated by first multiplying the surface emis-
sivity covariance matrix by 4, and then decreasing the correlation coefficient
between different channels by half. This a priori constraint is not too strict so
that signals from observations can be captured, neither too loose so that surface
emissivity estimates still fall within a reasonable range. The measurement error
covariance Sε is a diagonal matrix of which the main diagonal is composed of
the square of the PREFIRE noise equivalent spectral radiance.

x̂ is the optimal estimate of the state, of which the uncertainty can be
characterized by the a posteriori covariance matrix Ŝ. Theoretical formulas of

52



x̂ and Ŝ can be conveniently derived based on Gaussian-distributed pdfs.

x̂ = (KTSε
−1K + Sa

−1)−1(KTSε
−1y + Sa

−1xa) (4.4)

Ŝ = (KTSε
−1K + Sa

−1)−1 (4.5)

The optimal estimate x̂ can be viewed as a sum of a priori mean and observed
signal weighted by the inverse of covariance matrices. The Jacobian matrix
K = δF (x)/δx describes the first derivative of the forward model with respect
to a state variable.

For moderately linear cases, the Jacobian K can be used to invert observa-
tions in the measurement space back to the state space. Due to the dependence
of Jacobian K on the state x, it is necessary to iteratively solve the inverse
problem and update the Jacobian at each iteration step. Therefore, optimal es-
timation algorithm uses the iterative Gauss-Newton method to find the root of
∇x = −ln(P (x|y). The retrieval process is governed by the following iteration
steps.

xi+1 = xa + (γ−1
a + Ki

TSε
−1Ki)

−1Ki
TSε

−1[y −F(xi) + Ki(xi − xa)] (4.6)

Si = (γ−1
a + [Ki]

TSε
−1Ki)

−1(γ2Sa
−1 + Ki

TSε
−1Ki)(γ

−1
a + Ki

TSε
−1Ki)

−1

(4.7)
Different from the classic formulations in Rodgers (2000), a tuning parameter

γ is introduced to manually adjust the relative weight of a priori constraints
and observed information (Carissimo et al. 2005, Zhou et al. 2007, Masiello et
al. 2012, Turner et al. 2014). γ >1 means more information from the a priori
than the observation. Following the work of Turner et al. (2014), a sequence
of γ values [1000, 300, 100, 30, 10, 3, 1, 1, 1 . . .] has been used in this study.
This modification is meant to stabilize the retrieval process by gradually adding
information from the observation step by step. The iteration will stop when
γ=1 and the convergence criterion

((xi − xi+1)T [Si]
−1(xi − xi+1) <

length(x)

10
(4.8)

is met. This convergence criterion makes sure that the change of x between two
steps is smaller than the retrieval uncertainty by at least an order of magnitude.

4.3.3 Surface emissivity mapping

The mapping process transforms surface spectral emissivity on the PREFIRE
channels to the PCRTM (sensor ID: 2) input spectrum covering 740 grids from
50.38 to 2759.89 cm−1. For each PCRTM spectral grid, If its wavenumber falls in
any PREFIRE channel, the surface emissivity at this PCRTM spectral grid will
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Figure 4.1: Flowchart of the optimal estimation algorithm for surface spectral
emissivity retrieval on the PREFIRE channels.
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be set equal to the value on that PREFIRE channel. If its wavenumber falls
beyond the PREFIRE spectral range, the surface emissivity at this PCRTM
spectral grid will be set equal to the value on the nearest PREFIRE channel, in
other words, at n = 10 when wavenumber is smaller than 424.24 cm−1 or at n =
27 when wavenumber larger than 1228.07 cm−1. If its wavenumber does not fall
in any selected PREFIRE channel but still within the PREFIRE spectral range,
the surface emissivity at this PCRTM spectral grid will be set equal to the value
on the nearest PREFIRE channel, or the average of two adjacent channels if
the PCRTM wavenumber happens to fall at the middle between two PREFIRE
channels.

4.3.4 Conversion of PCRTM output back to the PREFIRE channels

The radiances and Jacobians generated by the PCRTM are on the 5421 spec-
tral grids from 50 to 2760 cm−1 at 0.5 cm−1 spectral resolution. This output
spectrum differs from that of PREFIRE, which means the radiances and Jaco-
bians need to be converted back to PREFIRE channels. To solve this problem,
spectral response function (SRF) and relevant spectrum information in the file
“PREFIRE SRF v0.10.4 360 2021-03-28.nc” are used. The SRF (size: 6951 ×
63) is on the spectrum of 6951 grids (0.43 - 60.00µm at 0.0086µm resolution)
for all the PREFIRE channels. The PCRTM output Y0 (size: 5421 × 1) is first
interpolated onto the SRF spectrum to get Y1 (size: 6951 × 1). For each se-
lected PREFIRE channel, find the corresponding SRF column (size: 6951 × 1)
and select out SRF spectral grids which fall within the channel spectral range.
If (1) the sum of SRF column is positive and (2) the sum of Y1on the selected
spectrum is a real value, Y1 will then be convolved using the SRF column to
derive Y2 on this PREFIRE channel.

Y2 =

∑
Y1 · SRFcolumn ·∆λ∑
SRFcolumn ·∆λ

,∆λ = 0.0086µm (4.9)

Otherwise, the final output on this PREFIRE channel will be set as “Not a
Number” (NaN).

4.4 Information content analysis

The information content analysis aims to evaluate the information contributed
by the true state given noisy observations. In order to gain an insight before
the actual conduction of retrievals, monthly mean profiles in three typical polar
regions: Arctic Ocean (73-77oN, 0-360oE), Greenland (70-80oN, 310-340oE),
Antarctic Plateau (75-85oS, 60-90oE) from ERA5 6-hourly reanalysis data in
January and July 2005 are used for the information content analysis.
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4.4.1 Averaging Kernel

The averaging kernel matrix, A, (Backus et al. 1970) A quantitatively evaluates
the sensitivity of retrieval results to the true state.

A =
δx̂

δx
= SaKT (KSaKT + Sε)

−1K (4.10)

The columns of A describe the response of retrieval estimates to the change of
a specific true state variable. The rows of this averaging kernel matrix represent
the sensitivity of a specific retrieval estimate to all state variables. And the
diagonal elements denote the sensitivity of a specific retrieval estimate to its
own true value. This self-sensitivity is expected to be 1 in the ideal scenario.

Averaging kernels of surface emissivity in three typical polar regions: Arctic
Ocean, Greenland and Antarctic Plateau are shown in Figure 4.2 for January
and July in 2005. Each curve represents a row in the averaging kernel matrix.
The a priori covariance matrix Sa is generated by first multiplying the emissivity
covariance matrix by 4, and then decreasing the correlation coefficient between
different channels by half. For Arctic Ocean and Greenland, the peak values of
MIR channels are larger than 0.5 in January and July. In contrast, the peak
averaging kernel values of FIR channels decrease in July mostly due to increased
water vapor absorption.

4.4.2 Degree of Freedom for signal

Degree of freedom for signal d refers to the number of independent pieces of
information concerning the true state that can be determined from a measure-
ment. This value denotes how informative the observation can be given the
measurement noise and the dependence among state variables. Degree of free-
dom for signal equals to the trace of averaging kernel matrix, in other words,
the sum of self-sensitivity.

d = tr(SaKT (KSaKT + Sε)
−1K) = tr(A) (4.11)

The d values for signals shown in Table 4.2 are based on the 52 valid PRE-
FIRE longwave channels. The a priori covariance matrix Sa is generated by
first multiplying the emissivity covariance matrix by 4, and then decreasing the
correlation coefficient between different channels by half. The DOF for surface
emissivity in the MIR varies around 3 to 4, despite the change of total column
water vapor. While the d for signal surface emissivity in FIR decreases when
the total column water vapor increases. This implies that surface emissivity re-
trieval in the FIR can be significantly influenced by the water vapor abundance.

4.5 Validation

Synthetic clear-sky PREFIRE radiances are used to validate the surface emissiv-
ity retrieval algorithm. There are 960 profiles including ECWMF ERA5 6-hourly
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Figure 4.2: Averaging kernels of surface spectral emissivity in three typical polar
regions: Arctic Ocean (73-77oN, 0-360oE), Greenland (70-80oN, 310-340oE),
Antarctic Plateau (75-85oS, 60-90oE) calculated using ERA5 6-hourly reanalysis
data in January and July 2005.
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Arctic Ocean Greenland Antarctic Plateau
JAN JUL JAN JUL JAN JUL

d(T, q, Ts, εn) 9.6 8.4 10.9 8.6 11.8 11.8
d(εn) 5.1 4.0 7.0 4.8 9.5 9.2
d(εnMIR) 3.0 3.6 3.0 3.9 3.7 2.7
d(εnFIR) 2.1 0.4 4.0 1.0 5.8 6.5
d(TCWV (cm)) 0.30 1.27 0.12 0.59 0.07 0.02

Table 4.2: Degree of freedom, d, for signal and total column water vapor in
three typical polar regions: Arctic Ocean (73-77oN, 0-360oE), Greenland (70-
80oN, 310-340oE), Antarctic Plateau (75-85oS, 60-90oE) calculated using ERA5
6-hourly reanalysis data in January and July 2005.

temperature and humidity, surface temperatures and pressures randomly cho-
sen in January, April, July, October 2005, 240 profiles for each month. Surface
emissivity spectrums from the surface spectral emissivity database (Huang et
al., 2016) are randomized by ±0.05, and adjusted to 0.98 if the emissivity values
exceed 1. The atmospheric profiles and surface properties are then fed into the
PCRTM V3.4 to generate the synthetic clear-sky PREFIRE radiances without
noise. The synthetic measurement noises are randomly derived from the normal
distribution with zero mean and one standard deviation characterized by the
PREFIRE noise equivalent spectral radiances. These random noises are then
added to the radiances to generate the synthetic clear-sky PREFIRE radiances
with noise. Both synthetic radiances without and with noise are used to retrieve
surface spectral emissivity. Differences between the retrieved surface emissivity
and the true surface emissivity values, namely the input to PCRTM, are investi-
gated. Retrieval results using synthetic radiances without noise can validate the
performance of the optimal estimation retrieval algorithm. On the other hand,
results using synthetic radiances with noise can examine the accuracy level of
surface emissivity retrievals in practice given the PREFIRE instrument noise.

Figure 4.3 shows the mean and root mean square error (RMSE) of absolute
differences between the surface emissivity retrievals and the true values, using
clear-sky synthetic PREFIRE radiances without noise. All of the 960 cases in
four months converged within 10 iterations. The optimal estimation retrieval
algorithm performs steadily on the MIR channels, with the bias mean plus
RMSE falling within the range [-0.02, 0.01]. For channels in the FIR, mean of
the absolute differences vary within ±0.01. While the corresponding RMSEs are
between 0.02 and 0.03, larger than those in the MIR. This increase of RMSEs
is mostly attributable to cases in July and October.

Figure 4.4 shows the mean and root mean square error (RMSE) of abso-
lute differences between the surface emissivity retrievals and the true values,
using clear-sky synthetic PREFIRE radiances added with the instrument noise.
Again, all of the 960 cases in four months converged within 10 iterations. The
mean and RMSE of absolute differences show no significant difference compared
to those in Figure 5.1. With the currently expected PREFIRE instrument noise,
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Figure 4.3: Mean (denoted by solid point markers) and Root Mean Square
Error (denoted by bars) of absolute differences between the surface emissiv-
ity retrievals and the truth. The surface emissivity retrievals are derived from
clear-sky synthetic PREFIRE radiances without noise. The panel (a) is based
on retrieval results of all the converged cases. Subpanels (b), (c), (d), (e) char-
acterize retrieval results in January, April, July and October respectively.
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Figure 4.4: Similar to Figure 4.3 but surface emissivity retrievals derived from
clear-sky synthetic PREFIRE radiances added with instrument noise.
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the averaged surface emissivity retrieval will not be noticeably affected compared
to the idealized retrieval without any noise.

4.6 An update

The algorithm can be applied to other PREFIRE SRF. We modified the PRE-
FIRE SRF from version 10 (“PREFIRE SRF v0.10.4 360 2021-03-28.nc”) to
version 12 (”PREFIRE TIRS1 SRF v12 2023-08-09.nc” and
”PREFIRE TIRS2 SRF v12 2023-08-09.nc”). Version 12 has different SRFs for
two instruments: TIRS1 and TIRS2. Each instrument has 8 sensors. For the
same instrument, all 8 sensors have the same SRF, but have different Noise-
Equivalent Delta Radiance (NEDR), see Figure 5.3. We only do surface emis-
sivity retrieval for channels with low NEDR (bitflag¡=1). Table 4.3 lists the
channels used for surface emissivity retrievals for each sensor of TIRS1 and
TIRS2. Then, they will be expanded to all 58 PREFIRE longwave channels
using interpolation.

As validation, the surface emissivity retrieval algorithm is applied to syn-
thetic PREFIRE radiance. Then the retrieved surface emissivity is compared
with true emissivity used for simulating synthetic PREFIRE radiance. The
synthetic PREFIRE radiance is simulated from GEOS-5 FP-IT analysis in four
months of 2021 (three days in each month). Figures 4.5 and 4.6 show the mean
and standard deviation of the difference between retrieved and true emissivity.
Generally, the mean difference and standard deviation are larger for detected
clear-sky cases than for truly clear-sky cases. Table 4.4 summarizes the dif-
ference between retrieved and true surface emissivities for channels used for
retrieval. Overall, the median differences are all negative about -0.01 and the
RMSEs are about 0.015-0.020. There are very small differences between TIRS1
and TIRS2.

4.7 References

Backus, G., and F. Gilbert. (1970), “Uniqueness in the Inversion of Inaccurate
Gross Earth Data.” Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences, vol. 266, no. 1173, pp. 123–192.

Carissimo, A., I. De Feis, and C. Serio. (2005), “The physical retrieval method-
ology for IASI: The δ-IASI code”. Environ. Model. Software, 20, 1111-1126.
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Number of Channels used for retrieving surface emissivity
Channels used

TIRS1 Sensor 1 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 2 13 10 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 3 9 10 14 15 16 23 24 25 26 27
Sensor 4 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 5 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 6 14 10 12 13 14 15 16 20 21 22 23 24 25 26 27
Sensor 7 10 10 12 13 14 15 16 20 22 26 27
Sensor 8 12 10 12 13 14 15 16 20 21 23 24 25 26

TIRS2 Sensor 1 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 2 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 3 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 4 12 11 12 14 15 19 20 21 22 23 24 25 26
Sensor 5 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 6 13 11 12 13 14 15 19 20 21 22 23 24 25 26
Sensor 7 11 13 14 15 19 20 21 22 23 24 25 26
Sensor 8 13 11 12 13 14 15 19 20 21 22 23 24 25 26

Table 4.3: Number of channels and channels used for deriving surface emissivity
for each sensor of TIRS1 and TIRS2.

Sensor TIRS 1 Sim Performance TIRS 1 TIRS 2 Sim Performance TIRS 2
Error Error
Delta Delta

5th 95th median 5th 95th median
1 -0.027 0.015 -0.011 0.016 -0.030 0.016 -0.011 0.017
2 -0.023 0.014 -0.013 0.016 -0.025 0.016 -0.010 0.016
3 -0.035 0.011 -0.017 0.020 -0.019 0.018 -0.011 0.017
4 -0.019 0.016 -0.011 0.015 -0.024 0.014 -0.012 0.016
5 -0.037 0.016 -0.012 0.019 -0.028 0.015 -0.011 0.017
6 -0.022 0.016 -0.012 0.015 -0.024 0.015 -0.011 0.015
7 -0.021 0.018 -0.011 0.015 -0.026 0.010 -0.014 0.017
8 -0.024 0.015 -0.012 0.016 -0.024 0.014 -0.011 0.015

Aggregate -0.025 0.016 -0.012 0.017 -0.025 0.015 -0.012 0.016

Table 4.4: 5th, 95th percentile, median value, and error Delta (root mean square
error) of the absolute difference between retrieved and true surface spectral
emissivity for TIRS1 and TIRS2. Aggregate value is from the combination of
all 8 Sensors.
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Figure 4.5: Mean and standard deviation of the difference between retrieved
and true emissivity at PREFIRE channels for each sensor of TIRS1 over the
polar regions. The black line is for cases that are purely clear sky. The red line
is for cases that are detected as clear sky using the cloud mask algorithm. Dots
are for the channels used for retrieval. Ticked vertical lines show the standard
deviation of the difference.
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Figure 4.6: Same as Figure 4.5, but for TIRS2.
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5 Level 2 Spectral FLux

PREFIRE Spectral Flux Algorithm Theoretical Basis Document Xianglei Huang
and Xiuhong Chen April 9, 2021

PREFIRE Spectral Flux Algorithm Theoretical Basis Document

5.1 Introduction

5.1.1 Purpose

This algorithm theoretical basis document (ATBD) describes the algorithm used
to derive the PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment)
spectral flux product from observed PREFIRE spectral radiance. The product
is included in the PREFIRE Level 2 (L2) product. Specifically, this document
describes the data, forward modeling tool and algorithm details, and validation
results. We derive both clear-sky and overcast-sky spectral flux at PREFIRE
longwave channels ranging from 5 to 54 µm (PREFIRE channels 6 - 63) over
polar regions.

5.2 Data Sets and Forward Modeling Tool

The PREFIRE Spectral fluxes are derived from PREFIRE radiances based on
spectral ADMs for different sub-scene types and different surface types. Spectral
ADMs were built offline using a forward radiative transfer model (PCRTM
version 3.4) and using 6-hourly profiles from ECMWF ERA5 reanalysis. The
sub-scene type is also sometimes referred to as “discrete interval” in the CERES
SSF algorithms (Loeb et al. 2005).

5.2.1 PREFIRE

There are two 6U CubeSats in PREFIRE (SAT1 and SAT2), which are in dis-
tinct 470–650 km altitude, near-polar (82o-98o inclination) orbits each carrying
a miniaturized IR spectrometer (TIRS1 and TIRS2; each instrument has 8 sen-
sors), covering 0- 54 µm at ∼0.84 µm spectral resolution, operating for one sea-
sonal cycle (a year) (https://prefire.ssec.wisc.edu/). PREFIRE measurements
are at nadir view and over the polar regions. Channels 8, 9, 17, 18, 35 and 36
have zeros spectral response function. So these six channels have invalid mea-
surements. Also, some channels having large noise are also not used. Table 5.1
shows the number of channels and specific PREFIRE channels used to derive
spectral flux. Spectral fluxes at all 58 longwave channels are derived based on
these filtered radiances at valid channels and corresponding ADMs following
Loeb et al., 2005, Huang et al.(2008; 2010; 2014), and Chen et al. (2013).

Figures 5.1, 5.2 and 5.3 show the SRF for each channel and Noise-Equivalent
Delta Radiance/Temperature for channels used for deriving spectral flux, respec-
tively, based on PREFIRE SRF files
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Sensor Number of Channels used for deriving spectral flux
Channels used

TIRS1 1 51 6-7 10 -16 19-34 37-50 52-63
2 47 6-7 10 13-16 19-34 37 39-52 54- 62
3 45 6-7 10 11 14-16 19 23-34 37-42 44 -60 62-63
4 52 6-7 10 -16 19-34 37-63
5 45 6-7 10-16 19-29 31-34 37-49 52 55-57 60- 63
6 49 6-7 10 -16 19-27 29-34 37-51 53 55-63
7 45 6-7 10 -16 19-20 22 26-34 37 39-56 58-59 61-63
8 46 10 12 -16 19-21 23-26 28-34 37-56 58-63

TIRS2 1 46 6-7 10-15 19-34 37 40-47 50-62
2 51 6-7 10-15 19-34 37-63
3 21 6-7 10 -16 19 -27 29-31
4 48 6-7 10-12 14 15 19-28 30-34 37-51 53-63
5 32 6 -7 10-16 19-34 37-38 40-42 44 53
6 42 6-7 10-15 19-31 41-43 45-51 53-63
7 24 6-7 10 13-16 19-29 31-34 38-39
8 36 6-7 10-16 19-31 38 41-43 46-49 51 53-54 58 61-62

Table 5.1: Number of channels and channels used for deriving PREFIRE spec-
tral flux for each sensor of TIRS1 and TIRS2.

PREFIRE_TIRS1_SRF_v12_2023-08-09.nc and
PREFIRE_TIRS2_SRF_v12_2023-08-09.nc.

5.2.2 ECMWF Reanalysis

The latest European Center for Medium Range Weather Forecasting (ECMWF)
ERA-5 reanalysis (Hersbach et al. 2020) are used to simulate clear-sky PRE-
FIRE radiance and flux at nadir view. ERA-5 is based on the Integrated Fore-
casting System (IFS) Cy41r2, which was operational in 2016. ERA-5 has re-
placed the popularly used ERA-Interim reanalysis (Dee et al., 2011) by using
12-hourly ten-member ensemble 4D-Var scheme. ERA-5 has assimilated lots of
historical satellite and in-situ observations and forcing from the improved radi-
ation system and sea-surface boundary conditions. The temperature, wind, and
humidity in the troposphere are improved compared to ERA-Interim. ERA-5
has archived hourly and high spatial resolution data. The vertical pressure lev-
els are still the same as in ERA-Interim (37 levels from the surface to 1hPa).
We only used the 6-hourly profiles of temperature, humidity, as well as surface
skin temperature and surface pressure at 1.5o by 1.5o grids for simulations. We
use four months (January, April, July and October) of data in 2005 for ADM
construction.
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Figure 5.1: Spectral response function for PREFIRE channels 1-32, slit width
= 360 µm. Vertical lines show the lower and upper bounds of each channel.
Blue lines are for TIRS1 and red lines are for TIRS2.
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Figure 5.2: Same as Figure ??, but for PREFIRE channels 33-63.
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Figure 5.3: Left: Noise-Equivalent Delta Radiance (NEDR,1-sigma radiance
noise level) of PREFIRE measurements. Right: same as left but for Noise-
Equivalent Delta Temperature at a temperature of 255 K. Top panels are for
TIRS1 and lower panels are for TIRS2. Different colors are for different sensors.

5.2.3 Forward Radiative Transfer Model

In order to construct ADMs suitable for the PREFIRE, a forward radiative
transfer model is needed. We use PCRTM (principal component-based radia-
tive transfer model) V3.4 for this purpose. PCRTM was developed by Liu et
al. (2006). It utilizes the correlations between radiances over different fre-
quencies and thus, compared to the line-by-line calculation, greatly reduces the
number of monochromatic calculations without significant degradation of the
accuracy. Compared with the line-by-line radiative transfer model benchmark
calculations, the root-mean-square errors for the PCRTM to calculate AIRS
spectrum is less than 0.4 K (Liu et al., 2006). A recent intercomparison study
of fast hyperspectral radiative transfer models for cloudy scenes (Aumann et al.,
2018) also confirms the robust performance of the PCRTM compared to other
fast radiative transfer models. The PCRTM-based simulator by Chen, Huang,
and Liu (2013) is designated to interface the PCRTM with meteorological fields
from both climate models and reanalyses in a flexible way and has been used in
other published studies (e.g., Bantges et al., 2016; Huang et al., 2014; Pan et
al., 2017; Chen et al., 2018).

5.2.4 Synthetic PREFIRE Radiance and Flux

For clear-sky condition: The profiles of temperature, humidity and ozone, and
surface skin temperature from ECMWF ERA-5 are fed into the PCRTM-based
radiance simulator to calculate clear-sky spectral radiance at nadir view. Profiles
of CH4, CO, and N2O are from standard profiles (McClatchey et al.,1972. The

70



CO2 vertical profile from McClatchey et al. (1972) is scaled by the CO2 mixing
ratio of the actual month as compiled by National Oceanic and Atmospheric
Administration Earth System Research Laboratory. Surface emissivity is from
Huang et al. (2016). For the sea-ice region, emissivity is a weighted average of
water and ice emissivity using sea-ice fraction from ERA-5.

For cloudy-sky condition: the PCRTM also needs cloud phase, cloud optical
depth, cloud effective size for each level with clouds. The grid is assumed to be
overcast. Clouds above 440 hPa is deemed as ice clouds, clouds below 440hPa
is deemed as water clouds; the effective size of ice cloud is parameterized based
on cloud temperature (Ou and Liou, 1995); effective size of water cloud is fixed
as 20 micron; the cloud optical depths are calculated from the liquid (Fouquart
1987) and ice water content (Ebert and Curry 1992).

Synthetic PREFIRE radiance is done by convolving the PCRTM output at
0.5 cm−1 resolution with the spectral response functions of individual PREFIRE
channels. Synthetic PREFIRE fluxes are computed using a 2-point (32.333o,
69.203o) Gaussian quadrature (Clough et al., 1992), and are just the integration
of spectral flux at 0.5 cm−1 within each PREFIRE channel (i.e., without convo-
lution with PREFIRE SRF). Upper panel of Figure 5.4 shows the flux difference
between PCRTM using 2-point Gaussian quadrature method and LBLRTM us-
ing 3-point Gaussian quadrature method. Fluxes by PCRTM are 1-3 Wm−2

larger than fluxes by LBLRTM. Lower two panels of Figure 5.4 show the dif-
ference in clear-sky fluxes between 2-point and 3-point Gaussian quadrature.
The differences are within -0.1 - 0.6 Wm−2. This suggests that the differences
between PCRTM and LBLRTM are mainly from their radiation algorithms, not
from Gaussian quadrature.

5.3 Algorithm

Figure 5.5 demonstrates the overall algorithm. There are three steps in the
algorithm: (1) constructing ADMs, Rv(θ), for all valid PREFIRE channels, and
mean synthetic spectral flux(Fn) for each scene type for all 58 channels which
includes FPREFIRE for valid PREFIRE channels and Fnon−PREFIRE for six
invalid PREFIRE channels), (2) estimating the spectral flux at each PREFIRE
valid channel (FPREFIRE), and (3) estimating the spectral fluxes at channels
with zero SRF or large noise (Fnon−PREFIRE).

5.3.1 Scene Type Information

(1) Definition of Scene or Sub-scene Type Over the polar region (60o-90oN and
60o-90oS): The surface types can be categorized into six kinds as listed in Table
5.2. They are defined using sea ice fraction, snow depth, and land-ocean mask.
The sub-scene type (also called the discrete interval) of a footprint for clear-sky
is defined based on surface skin temperature, total column water vapor (precip-
itable water), and lapse rate (surface skin temperature minus air temperature
at 300 hPa above surface). The definition of sub-scene types for the clear sky
is shown in Table 5.3. The sub-scene type for the overcast sky is defined based
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Figure 5.4: Upper: flux difference between PCRTM using 2-point Gaussian
quadrature method and LBLRTM using 3-point Gaussian quadrature method.
52 profiles from ECMWF, which were used in Liu et al. (2005) for PCRTM
validation, are used here for the calculation. Lower left: Scatter plot of the dif-
ference in clear-sky broadband longwave flux at TOA between 2-point (2-angle)
and 3-point (3-angle) Gaussian quadrature method by PCRTM V3.4. Lower
right: spatial map of the monthly-mean difference in clear-sky broadband long-
wave flux at TOA between 2-point and 3-point Gaussian quadrature by PCRTM
V3.4. Global mean and RMSE are 0.28 and 0.26 Wm−2, respectively. ECMWF
ERA-5 in 2012July (only 00UTC for each day) are used for the calculation.

72



‘

Figure 5.5: Flowchart illustration of the algorithm for deriving spectral fluxes
from the PREFIRE radiances.

on surface skin temperature, precipitable water, the temperature difference be-
tween surface and cloud top, pseudoradiance (Loeb et al. [2005]. ), which is
calculated based on cloud optical depth and cloud top temperature (pressure).
The discrete intervals of precipitable water, the temperature difference between
surface and cloud top, and surface skin temperature are shown in Table 5.4.
(2) Scene type information for ADM construction and PREFIRE flux derivation
For ADM construction, we need scene-type information to sort the synthetic
PREFIRE radiance and flux into a discrete interval. Sea ice fraction, snow
depth, surface skin temperature, total column water vapor and lapse rate are
all from ECMWF ERA-5. For PREFIRE flux derivation, given a PREFIRE ra-
diance, we need scene-type information to find a proper anisotropic factor in the
ADMs. So far, we have not observed PREFIRE radiance, we derive PREFIRE
fluxes from synthetic PREFIRE radiances, which are simulated using reanalysis.
So, sea ice fraction, snow depth, surface skin temperature, total column water
vapor, lapse rate are also from reanalysis. Later if there are observed PREFIRE
radiance, sea ice fraction and snow depth can be from observation, and surface
skin temperature, total column water vapor and lapse rate can be from ERA-
5 reanalysis, or PREFIRE retrievals if there are such products. Cloud optical
depth, cloud top pressure, and cloud effective radius are from retrievals by cloud
properties algorithm.

5.3.2 Spectrally Dependent ADMs

Following Loeb et al. (2005), Huang et al. (2008; 2010; 2014), and Chen et al.
(2013), an angular distribution model is needed to convert directional radiance

73



Surface type description
Sea ice sea ice fraction≥95% over

the ocean & snow depth<0.001m
Melted ice sea ice fraction between 5% and 95%

over the ocean & snow depth<0.001m
Ocean sea ice fraction<5% over the ocean

& snow depth<0.001m
Permanent snow snow depth≥0.5m over then land

(mainly over the Antarctic and Greenland)
Fresh snow 0.001m≤snow depth<0.5m

over the land
Non-snow land snow depth<0.001m

over the land

Table 5.2: Surface type classification over the polar region.

Precipitable water lapse rate surface skin temperature
(pw; cm) (∆T; K) (Ts; K)

0-0.5 <-10 <230
0.5-1 -10 - 0 230-250
1-2 0 - 10 250-270
>2 10-20 270-290

>20 >290

Table 5.3: Definition of clear-sky scene types. Each scene type is defined with
respect to different ranges of pw, ∆T , and Ts, which was referred to as a “discrete
interval” in Loeb et al. (2005). ∆T is defined as the lapse rate in the first 300
hPa of the atmosphere above the surface.

Precipitable water Surface-cloud surface skin temperature
(pw; cm) temperature difference (Ts; K)

(∆Tsc; K)
0-0.5 <-15 <230
0.5-1 -15 to 85 every 5K 230 to 270 every 10K
1-2 >85 270 to 290 every 5K
>2 > 290

Table 5.4: Definition of overcast scene types.
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Figure 5.6: Left: Mean anisotropic factor for different precipitable water (total
column water vapor; TCWV) over the non-snow land surface; Right: same as
the left but for different surface skin temperature Ts over the permanent snow
surface.

measurement to flux. The central quantity in such conversion is the anisotropic
factor, which is defined as

Rn(θ) =
πIsn(θ)

F sn
(5.1)

where Isn(θ) is the synthetic upwelling radiance intensity at TOA for channel n
and viewing zenith angle θ. For nadir view,F sn is the corresponding synthetic
upwelling flux. Overbar denotes the average of all profiles within the same
discrete interval as defined in Tables 5.3 and 5.4.

The spectral ADM consists of a set of pre-determined look-up tables of Rn(θ)
for each sub-scene type and for each channel, so it can be used to derive the
flux based on Eq. 5.2 using the PREFIRE-measured In(θ).

To construct the spectral ADMs, in practice we used ERA-5 reanalyses from
four months (January, April, July and October) in 2005. For clear sky, we build
spectral ADMs for each surface type, more than eight thousand profiles are cho-
sen to construct the spectral ADMs. For an overcast sky, the spectral ADMs
are not dependent on surface type.

(1) Anisotropic factor for different precipitable water and Ts
Figure 5.6 shows an example of the anisotropic factor for different precip-

itable water (or total column water vapor; TCWV) and surface skin temper-
ature Ts. For most PREFIRE channels, Rn(θ = 0o) are within 1.1-1.3. The
Rn(θ = 0o) has a small dependence on TCWV except for wavelengths between
16-25 microns. The Rn(θ = 0o) has larger dependence on Ts than on TCWV.

(2) Anisotropic factor for different surface types.
Figure 5.7 shows an example of the anisotropic factor for different surface

types. The dependence on surface type is obvious for window channels between
8-14 µm.
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Figure 5.7: Mean anisotropic factor for different surface types. Each panel is
for a sub-scene type labeled in the title.
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5.3.3 Estimating Spectral LW Fluxes from Spectral Radiance

The algorithm is following Huang et al. (2008; 2010; 2014), and Chen et al.
(2013). It is summarized below: For channels with valid PREFIRE radiance,
the derivation of spectral flux is straightforward. It merely uses Eq 5.2. With
the ADMs, Rn(θ), built in Section 5.3.2, we also need scene type information
defined using TCWV, Ts and ∆T to derive spectral flux from PREFIRE spectra.
They are either from atmospheric retrievals or from reanalysis. For an overcast
sky, which is determined using the cloud mask product, we also need cloud
optical depth, cloud top pressure, and cloud effective radius. They are from
cloud property retrievals.

Fn =
πIn(θ)

Rn(θ)
(5.2)

FPREFIRE=Fn. To obtain spectral fluxes over the entire longwave spectral
range, a scheme has to be developed to estimate spectral fluxes at invalid
PREFIRE channels 8,9, 17,18 35, 36 and other channels with large NEDR.
A multi-regression scheme based on the Principal Component Analysis is used
to obtain the corresponding spectra fluxes. Parameters in the regression scheme
are derived based on the ECMWF ERA-5 profiles and synthetic spectra. For
every ECMWF ERA-5 profile falling into a given discrete interval, the synthetic
spectral fluxes at all channels are computed. Spectral EOF analysis (principal
component analysis in the spectral domain) (Haskins et al., 1999; Huang et al.,
2003; Huang and Yung, 2005) is then applied to the collection of synthetic spec-
tral fluxes to derive a set of orthogonal basis functions in the frequency domain,

F sn = F̄n

58∑
j=1

ejϕ
j
n (5.3)

where F sn is the synthetic spectral flux at frequency νn from one ECWMF profile
and F̄n is the average of all synthetic spectral fluxes at νn. The sum spans the
total number of channels, ϕjn(j = 1−58) are the principal components (unitary
vectors) that consist of a complete set of orthogonal basis in the N-dimensional
space, and ej is the projection of (F sν − F̄ν) onto the jth principal component
φjν . In practice, it is found that 99.99% variance can be explained by the first
13 or even fewer principal components. Therefore, we only retain the first M
principal components that account for 99.99% variance. In the matrix form, it
means

F s − F̄ ≈ [ϕ1, ϕ2, . . . , ϕM ]


e1

e2

. . .
eM

 = Φes (5.4)

where F s,
F ∼= {F̄PREFIRE , F̄non−PREFIRE}, ϕ1, ϕ2, . . . , ϕM are vectors with a di-

mension of 58 (M � 58). Correspondingly, Φ = {ΦPREFIRE ,Φnon−PREFIRE}
is an 58×M matrix and es is an M × 1 vector. Note that the total number of
channels is 58. The total number of valid PREFIRE channels is smaller than
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58 but still much larger than M . Since Eq. 5.4 holds for all channels, if we
use PREFIRE in subscript to denote a set of valid PREFIRE channels, we still
have

FPREFIRE − F̄PREFIRE ≈ ΦPREFIREe (5.5)

Note that FPREFIRE could be derived from valid PREFIRE measurement using
Eq. 5.2. F̄PREFIRE , on the other hand, are the mean spectral fluxes at all
PREFIRE channels from the synthetic spectra for each sub-scene type same as
for ADMs. Eq. 5.5 implies a least-square solution

e ≈ (ΦPREFIRE∗−ΦPREFIRE)−1ΦPREFIRE∗(FPREFIRE−F̄PREFIRE) (5.6)

where Φ∗ is the transpose of Φ. In practice, because of M � 58, ΦPREFIRE
is well-conditioned for every discrete interval and inversion of (Φ ∗PREFIRE
ΦPREFIRE) is numerically stable. Once e is obtained for every qualified PRE-
FIRE observation, Eq. 5.7 can be used to derive the spectral flux at all PRE-
FIRE channels.

F ≈ Φe+ F̄ (5.7)

Where F = {FPREFIRE , Fnon−PREFIRE}.
The left panel in Figure 5.8 shows an example of the performance of the

algorithm. The derived spectral flux agrees well with true spectral flux except
for two channels in the CO2 band. This is largely because of that the CO2

channels have a smaller correlation with other channels. To improve the derived
flux at CO2 channels (n= 17, 18), we replace the results with fitted flux using
two-channel (n = 19, 20 for TIRS1 and n = 16, 19 for TIRS2) PREFIRE
radiances as,

F s17 = a0 + a1I
s
A + a2I

s
B (5.8)

F s18 = b0 + b1I
s
A + b2I

s
B (5.9)

Where A and B are two valid channels, a0, a1, a2 and b0, b1, b2 are regression
coefficients.

Figure 5.9 shows an example of the predicted spectral fluxes at two CO2

channels compared with true fluxes over the sea ice surface. Similar results can
be found for other surface types (not shown). Overall, the slope is higher than
0.98 and R2 is larger than 0.94 for all surface types and for both with noise
(data from the left panel of Figure 5.3) excluded and included.

5.4 Validations

5.4.1 Theoretical Validation

For theoretical validation, synthetic PREFIRE radiances are used to derive the
spectral fluxes and such spectral fluxes are compared with those directly com-
puted true flux by the PCRTM V3.4. True PREFIRE flux and synthetic PRE-
FIRE radiance are computed using GEOS-5 FP-IT temperature, humidity, and
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Figure 5.8: Left: Comparison of derived spectral flux with true spectral flux
over the sea ice surface and for sub-scene type: 0<TCWV<0.5cm, ∆T <-10K
and 230K< Ts <250K. Right: same as left, but estimated flux in two CO2

channels are replaced with flux fitted using two-channel radiances

Figure 5.9: Comparison of derived spectral flux with true spectral flux over the
sea ice surface for two CO2 PREFIRE channels. Each dot denotes a sub-scene
type in 2005. Synthetic PREFIRE radiances and true fluxes are simulated using
ERA-5 profiles. Left column: predicted fluxes are computed using Eqs 5.8 and
5.9 where the noise of PREFIRE measurement is not included in I19 and I20.
Right column: Same as the left column but the noise of PREFIRE measurement
(data from the left panel of Figure 5.3) is included in I19 and I20.
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Sensor TIRS 1 Sim Performance TIRS 1 TIRS 2 Sim Performance TIRS 2
Error Error
Delta Delta

5th 95th median 5th 95th median
1 -6.3 4.7 -0.1 13.4 -38.5 4.0 -0.2 22.6
2 -6.9 4.7 0.1 13.6 -37.8 4.2 -0.1 22.6
3 -8.3 4.9 0.1 14.1 -28.9 4.5 -0.3 22.6
4 -6.2 5.0 0.2 13.4 -38.2 4.3 0.0 22.6
5 -6.6 5.1 0.1 13.5 -24.8 4.0 -0.2 22.4
6 -6.4 5.0 0.2 13.4 -41.6 4.3 -0.0 22.7
7 -6.5 5.0 0.1 13.5 -26.4 4.5 -0.2 22.5
8 -7.5 5.3 -0.0 14.0 -25.8 3.9 -0.3 22.4

Aggregate -6.7 5.0 0.1 13.6 -33.1 4.2 -0.2 22.6

Table 5.5: 5th, 95th percentile, median value, and error Delta (root mean square
error) of the relative difference (%) between predicted and true spectral flux for
TIRS1 and TIRS2. Aggregate value is from the combination of all 8 Sensors.

cloud profiles in four months of 2021 (3 days in each month). Synthetic PRE-
FIRE radiances, T and q from Aux-met (determining scene type intervals for
clear sky), as well as the cloud mask product (determining clear sky or overcast
sky), cloud properties product (determining scene type intervals for overcast
sky) retrieved from the PREFIRE radiances, are applied to the algorithm to
get predicted PREFIRE flux. The differences between the spectral fluxes (or
the broadband OLR) predicted from the synthetic PREFIRE radiance and the
ones directly computed by the PCRTM are examined. This validation lets us
assess the whole algorithm without concerning the accuracy in spectroscopy and
forward modeling since the PCRTM is used as a surrogate of radiative transfer
in the real world.

Figures 5.10 and 5.11 are the comparison (relative difference) between de-
rived spectral fluxes and true (synthetic) fluxes (including both clear sky and
overcast sky) for each sensor type of TIRS1 and TIRS2. The largest errors are
still from the two CO2 channels or channels not covered with valid PREFIRE
radiance, and these two channels have less correlation with other valid channels.

Figures 5.12 and 5.13 are the histogram of the difference between predicted
OLRs and true (synthetic) OLRs (including both clear sky and overcast sky)
for each sensor type of TIRS1 and TIRS2. OLR is the integration of spectral
flux over the whole longwave. Overall, the OLR differences are within ±5 Wm2 .

Table 5.5 summarizes the relative difference between predicted and true
spectral flux at all 58 PREFIRE channels. Table 5.6 summarizes the relative
difference between predicted and true OLRs. The median errors are very close
to 0% for both TIRS1 and TIRS2. The RMSE errors of TIRS2 are generally
larger than those of TIRS1, which is primarily due to the spectral shifts of two
missing CO2 channels of TIRS2 compared to TIRS1.
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Figure 5.10: Relative difference between predicted and true spectral flux for all
PREFIRE longwave channels, and for each sensor type of instrument TIRS1.
The sensor number and number of channels used for deriving the whole longwave
flux are labeled on the title. All cases are from the polar regions.

Sensor TIRS 1 Sim Performance TIRS 1 TIRS 2 Sim Performance TIRS 2
Error Error
Delta Delta

5th 95th median 5th 95th median
1 -1.6 2.3 0.2 1.3 -3.5 2.7 -0.5 2.1
2 -1.6 2.5 0.2 1.3 -3.3 3.2 -0.2 2.0
3 -2.2 2.9 -0.2 1.6 -2.7 2.2 -0.7 1.6
4 -1.2 3.1 0.5 1.4 -3.1 3.2 -0.1 2.0
5 -1.6 3.1 0.4 1.5 -2.6 2.2 -0.4 1.5
6 -1.2 3.0 0.5 1.5 -3.4 3.1 -0.1 2.1
7 -1.2 3.0 0.5 1.4 -2.7 2.2 -0.4 1.6
8 -1.7 3.0 0.4 1.6 -2.7 1.9 -0.5 1.5

Aggregate -1.6 2.9 0.3 1.5 -3.0 2.6 -0.4 1.8

Table 5.6: Same as Table 5.5, but for the relative difference (%) of predicted
and true OLR for TIRS1 and TIRS2.
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Figure 5.11: Same as Figure 5.10 but for 8 sensors of instrument TIRS2.
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Figure 5.12: Histogram of OLR difference between prediction and truth for 8
sensors of instrument TIRS1. The mean, standard deviation, and number of
cases are shown on each panel. All cases are from the polar regions.

Figure 5.13: Same as Figure 5.12 but 8 sensors of instrument TIRS2.
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5.4.2 Validation using Observation

So far, there are no PREFIRE observations that can be used for this validation.
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6 Appendix

6.1 Table of variables

A Averaging Kernel Matrix NEDT Noise-Equivalent Difference Temperature
α angular resolution o offset
β azimuth angle Ω Solid angle
B blackbody radiance p pressure
χ convergene criterion P Probability
c speed of light, PWV Precipitable Water Vapor

cost function Q water vapor
CWP Cloud Water path ρ reflection coefficient
d degree of freedom R radius, Resistance, cost-function change
ε emissivity < Response function
ε noise, error ℘ Responsivity
φ longitude σB Stefan-Boltzmann constant
E Irradiance S Signal level in digitized counts
F Flux S covariance
f focal length SI segmentation index
F function SNR Signal-to-Noise ratio
γ a priori weight SRF Spectral Response Function

Airy function θ latitude, potential temperature
polar coordinate angle

G gravitational constant τ transmission, optical depth
g gain T Temperature
H height TR Training Radiances
h Planck’s constant TREM Training Eigenvector matrices
I radiance t time
IWC Ice water content φ polar coordinate angle
IWP Ice water path V voltage
j counter v velocity
k Boltzmann’s constant, unknown in eq 3.11 x, y, z position coordinates
K Jacobian z convergence (eq. 3.11)
λ wavelength, Marquardt-Levenberg parameter standard deviation of scaled differences
l distance x state vector
L radiance X Focal plane position
LTS Lower tropospheric stability y measurement vector
LWC Liquid water content Y eq. 4.9 not clear
LWP Liquid water path Y Focal plane position
M counter, mass ζ incidence angle
M matrix
N counter
n channel
N Normal distribution
ν frequency
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6.2 Abbreviations and Acronyms

ADM Angular Distribution Model
AIRS Atmospheric Infrared Sounder
ATBD Algorithm Theoretical Basis Document
CERES Clouds and the Earth’s Radiant Energy System

DOF Degree of Freedom
ECMWF European Centre for Medium-Range Weather Forecasts

EOF Empirical Orthogonal Function
FIR Far-InfraRed
IFS Integrated Forecasting System
LW Longwave
MIR Mid-InfraRed
OLR Outgoing Longwave Radiation

PCRTM Principal Component-based Radiative Transfer Model
PREFIRE Polar Radiant Energy in the Far-InfraRed Experiment

RMSE Root Mean Square Error
SSF Single Scanner Footprint
SRF Spectral Response Function

TCWV Total Column Water Vapor
TOA Top of Atmosphere
UTC Coordinated Universal Time
VZA Viewing Zenith Angle
WV Wavelength

Table 6.1: Abbreviations and Acronyms in this chapter.
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6.3 Figure listing with links.

# Brief Description # Brief Description
1.1 L1 Flowchart 5.1 SRFs for channels 1-32
1.2 Measured NEDR 5.2 SRFs for channels 33-63
2.1 GMAO simulations of column OD 5.3 TIRS1 and TIRS2 NEDR and NEDT
2.2 GMAO simulations of PWV 5.4 Flux differences for different methods
2.3 Cloud algorithm training 5.5 Spectral flux algorithm flowchart
2.4 Cloud algorithm EOFs 5.6 Mean anisotropic factor by PWV
2.5 Similarity indexes histogram 5.7 Mean anisotropic factor by surface type
2.6 Similarity indexes maps 5.8 Flux comparisons to truth as spectra
2.7 Cross-entropy loss 5.9 FLux comparisons to truth as statistics
2.8 Cloud mask 2D histrogram 5.10 Flux difference by channel for TIRS1
3.1 TIRS SRFs grouped by filter 5.11 Flux difference by channel for TIRS2
3.2 Atmospheric pressure weighting functions 5.12 OLR difference by scene for TIRS1
3.3 Atmospheric algorithm flowchart 5.13 OLR difference by scene for TIRS2
3.4 A priori T correlation and variance
3.5 Reanalysis regions
3.6 DFS joint histograms
3.7 Temperature retrieval metrics
3.8 Water vapor retrieval metrics
3.9 Antarctic ground stations
3.10 Arctic ground stations
4.1 SSE algorithm flowchart
4.2 SSE averaging kernels
4.3 SSE error estimates, noise-free
4.4 SSE error estimates with sensor noise
4.5 SSE truth different for TIRS1
4.6 SSE truth different for TIRS2

Table 6.2: List of Figures in this set of ATBDs.
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